a2 United States Patent
Resch

US009413529B2

US 9,413,529 B2
Aug. 9,2016

(10) Patent No.:
(45) Date of Patent:

(54) DISTRIBUTED STORAGE NETWORK AND
METHOD FOR STORING AND RETRIEVING
ENCRYPTION KEYS

(71) Applicant: CLEVERSAFE, INC., Chicago, I,

(US)

(72) Inventor: Jason K. Resch, Chicago, IL. (US)

International Business Machines

Corporation, Armonk, NY (US)

(73) Assignee:

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by O days.

@
(22)

Appl. No.: 14/292,727

Filed: May 30, 2014

(65) Prior Publication Data

US 2014/0281550 A1 Sep. 18, 2014
Related U.S. Application Data

(63) Continuation-in-part of application No. 13/736,848,
filed on Jan. 8, 2013, which is a continuation of
application No. 12/814,467, filed on Jun. 13, 2010,

now Pat. No. 8,351,600.

Provisional application No. 61/256,411, filed on Oct.
30, 2009.

(60)

Int. Cl1.
HO4L 9/08
HO4L 29/08

(51)
(2006.01)
(2006.01)

(Continued)

U.S. CL
CPC

(52)
HO4L 9/0822 (2013.01); GOGF 11/1004
(2013.01); GOGF 12/1408 (2013.01); GO6F
21/6218 (2013.01); HO4L 9/085 (2013.01);
HO4L 9/0863 (2013.01); HO4L 9/0894
(2013.01); HO4L 9/14 (2013.01);

(58) Field of Classification Search

HO04L 9/08
713/171
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

4,092,732 A 5/1978 Ouchi
5,454,101 A 9/1995 Mackay et al.
(Continued)
OTHER PUBLICATIONS

Shamir; How to Share a Secret; Communications of the ACM; vol.
22, No. 11; Nov. 1979; pp. 612-613.

Rabin; Efficient Dispersal of Information for Security, Load Balanc-
ing, and Fault Tolerance; Journal of the Association for Computer
Machinery; vol. 36, No. 2; Apr. 1989; pp. 335-348.

Chung; An Automatic Data Segmentation Method for 3D Measured
Data Points; National Taiwan University; pp. 1-8; 1998.

(Continued)

Primary Examiner — Jacob Lipman
(74) Attorney, Agent, or Firm — Garlick & Markison;
Timothy W. Markison

(57) ABSTRACT

A method begins by a distributed storage (DS) managing unit
receiving an encryption key to store. The method continues
by determining an encryption method and encrypting the
encryption key with the determined encryption method to
produce an encrypted key. The method continues by encoding
and storing the encrypted key in accordance with a dispersed
storage error coding function to produce a set of encoded
encrypted key slices, wherein a decode threshold number of
the encoded encrypted key slices of the set of encoded
encrypted key slices are required to reconstruct the encrypted
key. Retrieval of the stored encryption key includes retrieving
and decoding at least a decode threshold number of the
encoded encrypted key slices of a set of encoded encrypted
key slices from storage units of the DSN. The method may
include raising or lowering the decode threshold or modifying
the retrieval order to increase/decrease security.

(Continued) 20 Claims, 13 Drawing Sheets
250 252 254 236
decnde threshold decede threshold decode threshold decode threshold i
8/5 816 88 i
| Sige s l seet I I Shee'l l | e '
I Slice 2 l SlicaZ ! | Siice 2 l | Slice:2 '
I Blice 3 l Slice 3 ! I S [| Shce3 '
I Sice4 i l Stiea 4 1 I Sliced [| Slice'd '
I Sice® i l Hices I I Shice & l | Slice s '
l Sice & ! l Slice 6 I I Sice’s l | Slice & '
l Blice 7 l Siice 7 | I Sioe [| Slice 7 '
| Hlige s I Siice 8 | I Slice' & [| Slice:8 '

US 9,413,529 B2
Page 2

(51) Int.CL
GOGF 12/14 (2006.01)
GOGF 11/10 (2006.01)
GOGF 21/62 (2013.01)
HO4N 21/2347 (2011.01)
HO4N 21/266 (2011.01)
HO4N 21/4405 (2011.01)
HO4N 21/845 (2011.01)
HO4L 9/14 (2006.01)
(52) US.CL
CPC ... HO4L 67/1097 (2013.01); HO4N 21/2347

(2013.01); HO4N 21/23476 (2013.01); HO4N
21/26613 (2013.01); HO4N 21/4405 (2013.01);
HO4N 21/44055 (2013.01); HO4N 21/8456
(2013.01); GO6F 2221/2107 (2013.01); GO6F
222172151 (2013.01); HO4L 2209/34 (2013.01)

(56) References Cited
U.S. PATENT DOCUMENTS

5485474 A 1/1996 Rabin
5,774,643 A 6/1998 Lubbers et al.
5,802,364 A 9/1998 Senator et al.
5,809,285 A 9/1998 Hilland
5,890,156 A 3/1999 Rekieta et al.
5,987,622 A 11/1999 Lo Verso et al.
5991414 A 11/1999 Garay et al.
6,012,159 A 1/2000 Fischer et al.
6,058,454 A 5/2000 Gerlach et al.
6,128,277 A 10/2000 Bruck et al.
6,175,571 Bl 1/2001 Haddock et al.
6,192,472 Bl 2/2001 Garay et al.
6,256,688 Bl 7/2001 Suetaka et al.
6,272,658 Bl 8/2001 Steele et al.
6,301,604 B1 10/2001 Nojima
6,356,949 Bl 3/2002 Katsandres et al.
6,366,995 Bl 4/2002 Vilkov et al.
6,374,336 Bl 4/2002 Peters et al.
6,415,373 Bl 7/2002 Peters et al.
6,418,539 Bl 7/2002 Walker
6,449,688 Bl 9/2002 Peters et al.
6,567,948 B2 5/2003 Steele et al.
6,571,282 Bl 5/2003 Bowman-Amuah
6,609,223 Bl 8/2003 Wolfgang
6,718,361 Bl 4/2004 Basani et al.
6,760,808 B2 7/2004 Peters et al.
6,785,768 B2 8/2004 Peters et al.
6,785,783 B2 8/2004 Buckland
6,826,711 B2 11/2004 Moulton et al.
6,879,596 Bl 4/2005 Dooply
7,003,688 Bl 2/2006 Pittelkow et al.
7,024,451 B2 4/2006 Jorgenson
7,024,609 B2 4/2006 Wolfgang et al.
7,080,101 Bl 7/2006 Watson et al.
7,103,824 B2 9/2006 Halford
7,103,915 B2 9/2006 Redlich et al.
7,111,115 B2 9/2006 Peters et al.
7,140,044 B2 11/2006 Redlich et al.
7,146,644 B2 12/2006 Redlich et al.
7,171,493 B2 1/2007 Shu et al.
7,222,133 Bl 5/2007 Raipurkar et al.
7,240,236 B2 7/2007 Cutts et al.
7,272,613 B2 9/2007 Sim et al.
7,636,724 B2 12/2009 de la Torre et al.
8,031,875 B1* 10/2011 Juelsetal.ccoornen. 380/277
8,468,368 B2* 6/2013 Gladwinetal. 713/193

2002/0062422 Al
2002/0166079 Al
2003/0018927 Al
2003/0037261 Al
2003/0065617 Al
2003/0084020 Al
2003/0174840 Al*

5/2002 Butterworth et al.
11/2002 Ulrich et al.
1/2003 Gadir et al.
2/2003 Meffert et al.
4/2003 Watkins et al.
5/2003 Shu
9/2003 Bogancccecocineennee 380/277

2004/0024963 Al
2004/0122917 Al
2004/0215998 Al
2004/0228493 Al
2005/0100022 Al
2005/0114594 Al
2005/0125593 Al
2005/0131993 Al
2005/0132070 Al
2005/0144382 Al
2005/0229069 Al
2006/0047907 Al
2006/0136448 Al
2006/0156059 Al
2006/0224603 Al
2007/0079081 Al
2007/0079082 Al
2007/0079083 Al
2007/0088970 Al
2007/0174192 Al
2007/0214285 Al
2007/0234110 Al
2007/0283167 Al
2009/0094251 Al

2/2004 Talagala et al.
6/2004 Menon et al.
10/2004 Buxton et al.
11/2004 Ma et al.
5/2005 Ramprashad
5/2005 Corbett et al.
6/2005 Karpoff et al.
6/2005 Fatula, Jr.
6/2005 Redlich et al.
6/2005 Schmisseur
10/2005 Hassner et al.
3/2006 Shiga et al.
6/2006 Cialini et al.
7/2006 Kitamura
10/2006 Correll, Jr.
4/2007 Gladwin et al.
4/2007 Gladwin et al.
4/2007 Gladwin et al.
4/2007 Buxton et al.
7/2007 Gladwin et al.
9/2007 Auetal.
10/2007 Soran et al.
12/2007 Venters, I1I et al.
4/2009 Gladwin et al.
2009/0094318 Al 4/2009 Gladwin et al.
2010/0023524 Al 1/2010 Gladwin et al.

OTHER PUBLICATIONS
Plank, T1: Erasure Codes for Storage Applications; FAST2005, 4th
Usenix Conference on File Storage Technologies; Dec. 13-16, 2005;
pp. 1-74.
Wildi; Java iSCSi Initiator; Master Thesis; Department of Computer
and Information Science, University of Konstanz; Feb. 2007; 60 pgs.
Legg; Lightweight Directory Access Protocol (LDAP): Syntaxes and
Matching Rules; IETF Network Working Group; RFC 4517, Jun.
2006, pp. 1-50.
Zeilenga; Lightweight Directory Access Protocol (LDAP): Interna-
tionalized String Preparation; IETF Network Working Group; RFC
4518; Jun. 2006; pp. 1-14.
Smith; Lightweight Directory Access Protocol (LDAP): Uniform
Resource Locator; IETF Network Working Group; RFC 4516, Jun.
2006; pp. 1-15.
Smith; Lightweight Directory Access Protocol (LDAP): String Rep-
resentation of Search Filters; IETF Network Working Group; RFC
4515; Jun. 2006; pp. 1-12.
Zeilenga; Lightweight Directory Access Protocol (LDAP): Directory
Information Models; IETF Network Working Group; RFC 4512; Jun.
2006; pp. 1-49.
Sciberras; Lightweight Directory Access Protocol (LDAP): Schema
for User Applications; IETF Network Working Group; RFC 4519,
Jun. 2006; pp. 1-33.
Harrison; Lightweight Directory Access Protocol (LDAP): Authen-
tication Methods and Security Mechanisms; IETF Network Working
Group; RFC 4513; Jun. 2006; pp. 1-32.
Zeilenga; Lightweight Directory Access Protocol (LDAP): Technical
Specification Road Map; IETF Network Working Group; RFC 4510,
Jun. 2006; pp. 1-8.
Zeilenga; Lightweight Directory Access Protocol (LDAP): String
Representation of Distinguished Names; IETF Network Working
Group; RFC 4514; Jun. 2006; pp. 1-15.
Sermersheim; Lightweight Directory Access Protocol (LDAP): The
Protocol; IETF Network Working Group; RFC 4511; Jun. 2006; pp.
1-68.
Satran, et al.; Internet Small Computer Systems Interface (iSCSI);
IETF Network Working Group; RFC 3720; Apr. 2004; pp. 1-257.
Xin, et al.; Evaluation of Distributed Recovery in Large-Scale Stor-
age Systems; 13th IEEE International Symposium on High Perfor-
mance Distributed Computing; Jun. 2004; pp. 172-181.
Kubiatowicz, et al.; OceanStore: An Architecture for Global-Scale
Persistent Storage; Proceedings of the Ninth International Confer-
ence on Architectural Support for Programming Languages and
Operating Systems (ASPLOS 2000); Nov. 2000; pp. 1-12.

* cited by examiner

US 9,413,529 B2

Sheet 1 of 13

Aug. 9,2016

U.S. Patent

T 'Ol

T nun

Fuideusui

07 @400

Funnduiod

(SR ABEVIT

|5 XA 991 03
&8
| TP X T 80US 37

4

L3 -%]

F7 yiomisu

‘/ef\f,\?

[Svx aams03 |ees | ap1 Aoouso3 |

148a3u) s8es01s

3¢ 2400
Sunnduion

i

| 7€ avepisiu NS |
R F-y

Eee

[Sy S90S

8@

:

7 2102
Supindwon

OF yo0iq eiep

10/ §E sy wiep

] @ :

& ®

@ ® .

| 79 x 1o01503 |ewe | zv 1 oo 03 |
'Y
1 9onap Jasn
¥ ¥

§¢ soeaw wm e m _;N.._m.wumtwpc_ NSO

¢

¢

Lve?

urss200.d §G _

87 8402 Bunndwo

BT uu

n Buissanoud ¢

€ @aeuaul NGO

-3

h 4

Sa

§7 8400 Funnduios

7T oomap Jasn

US 9,413,529 B2

Sheet 2 of 13

Aug. 9, 2016

U.S. Patent

§f ainpow ¥ sinpow TL BINpous aseand 07 snpow %9 ajnpowd 9 Anpo
2084I33UI NSO 9TBLIIIU (OH ysey ADELIBIU] HI0ASY SIBLIPL YEH P0B4IBIUI GS
F & % % & &

%4: v 1&
§S 8084433U1 Dd ¥5
'y SOIg NOH
&
X oo SRR B ST
ag 75 avepaanut 9 sing
4 B £ ERLIREN
JBHCAUOD 3 Ol
S01AEP O
&
L4
§EAowmw | 1 FHasjjonuos 0% amnpow
uieul o Aiotuau ST Buissenoud
)
¥
G un duissanoud
sopydesd ospia

97 3407 Suignduion

US 9,413,529 B2

Sheet 3 of 13

Aug. 9,2016

U.S. Patent

XA SS BLED PRROT JOUS € "Oid T7A 5 2I1BP PIPOD INLIB
o Suael 334 57 BUeU soNs
® =E . _ _ ®
® Nm_ SORJIIUL IDUS &
4 2
%7 20fS BIED PAPDI JOLS 77T @045 218p PIPLD JOLIB
[LB 824G DUIEY 3G
e - f47
I3Us Ele 3345 238
K Aol p PR, T A=3l 4
pepos douie | DIDOT 40MD
. o 'y
g 2UIBY BIHS & SLURY B3HS
%
—~ a - St
y 34T BIED T 8oHs 218 T
X :ﬂ i P P 1] p —
P2Pos Jolia £epol dokia
7y awiey ao1s ¥ SLURU B3YS +
78i =inpoul puid
puieu B3R | Asad | usBynea | Glunea | xapurang y —
BIIEEGE g ; ; o
. LOIIRWIO U BURNOY (BSIBAIUN 1walgo
DU 3DNS Eiep
\\ ity
\\\ 88
TG Aweuwmas eep - - SURY
LYY B mw,m B0 559008 M we{an
P Y .
T StugEas eiep H 38
...... -~ —
061 awRuaunDsg \\\\ 0% Qi 1880
T &
1o vien - .4 £l e 7 5400
. g @m anpow Aemaied 5l -
Opi sweu sounog = Sunnduwiod

Gt e

_ ASDJ _ uas ynepA | gl uneA

Sy 3Zanog

FE pun Buissanosd €

¥T 23iABP JaSH

US 9,413,529 B2

Sheet 4 of 13

Aug. 9,2016

U.S. Patent

¥ 9Ciis BIED O

¢ 8vs BIEp O

¢ BUHS ¥R Od

L 8K BleR 0d

B8 sorepndiseu

S

-8p ejep-1sod

|
|
!
X0 BEp 03 | |
m
!
u

[XX

i

1% woepndiveu

&

Bjep-isod

Loy eep 03 | |

g | 2q | g | eg | sq gl | | §old
omammﬁ_wﬁ_mnm_éwoﬁm o _ 70 _
B0KS =
mmnmmﬁ_an_tm_mﬁwmg m 5 _ 5_
wq | v f oy fog [og g | wg | og |
PP Ewsaa_ﬁ_ﬁ_eeewﬁm e
b Ol
A %.wwtmhm;ziiziaiiiiiiiiiiw
- L 5 oyendivew i
» TR0s0p el T I9POORQ ¥ s mepoid “
i !
m !
7 punjosuce plingad w w
m !
m — i
M BIBNS je——p] 1SDOOUT N BE:QEM@N eiep-aid
. s . =k
A — S ——— =
75 yuewBss ejep papoous | wacmsmmmw wep | | 06 juswbos M&%

US 9,413,529 B2

Sheet 5 0of 13

Aug. 9,2016

U.S. Patent

5'9id4
wefqo eyep wewbas 57T PIE 1sigo eep wewbes
109ig0 21ep 01 Jepesy pusdde pue 818940 57T =TT 108i00 E1Bp o} sepesy pusdde pue syeais
uiened SgBLEA DUILLGIED HTT A azis wewbas poxy suusIsp
Fy &
yseoudde
IYELEA Poxi
801

)

yoeodde uopeuswiies suuaap

1

........ 108{q0 BlEp IOl BIBPEISW SLILUSISR

7011
TBT 9718 0[O0 BIED SULIRIep
BT BUIRU BMINDS PUE 3080 BIED BAIBDEY

I

US 9,413,529 B2

LDl

wowfas viep poidAious se uonliod pUCoos
paydAicus pue uoiuod 1siy PRIGAIOUS SUIGIGD

1

|

[t}

Aoy uoidAious se uoiod punoss paydiious
10 ysey Buizyn uvouod 18 peidiioua aonpoid

1

je

Sheet 6 of 13

uoiod puoses paidAisus J0 ysey SiBinoED

)

o0

A9y uondAious se ysey uoniod
184 Buizpin uoniod punoas pajdAious aonpold

1

(Lo
A}

ysey uoiiod 184y B1EInsiED

Aug. 9,2016

t

|

<t

uoiod puooes
pue uoiod 154 o wswibes viep uopiped

i

™~
4

wawbes gep sAsoad

U.S. Patent

I

US 9,413,529 B2

g "old

uswhes g s8 uoiuod punoes
pawdAiosp pue uoiod 15i4 poidAinep suguwioD

1

Aoy uopdilious se ysey uoidod jsiy paidiiosp
Buzynn voiod puooss peydAinsp aonposd

i

Sheet 7 of 13

ysey uoniod 15y pardiioep 81Bineieo

1

Aeng vogdAnua se uoied puooss padiious
10 ysey Buryn uoniod 1ssy peidAinep esnpod

i

uotpiod puosss paidAious Jo ysey a1einsien

Aug. 9,2016

1

o0

uoiod pucoses peydAicus pue uoiiod 1Sy
paydiious ol wowbss eep peidAnus uoued

1

Lo

.|

i

wswies eep psidlous sasosd

U.S. Patent

I

[
N

josenbas auy o) Aoy 0L '9id
poidAiosp sy puss

1

US 9,413,529 B2

Ao efeoys isisanbed ey o1 Ao
oy} Buizann Aoy 15911DBi 8Lf) O] ASY

paidiious sy 1hosp poldAosp aul pLss

3 1

S

Aoy ajeaud
auy Buizinn Aay
paydAious sy 1dAoep

Aoy efieims e
sanpoid 0} piomssed
J0 UyseY a1BiInoen

7 1

Sheet 8 of 13

JESN SHY 4O}
JOSN S

Aay BIBALC aasiad
J0} piomssed easihal

I Uom\ﬁmg N |
paomssed

A 1dA08P O pOYIRW BUILLISIED

Aug. 9,2016

1

Ay paidAious sasual

1

Japsanbai e wod) 15enbas AS) aAsMIEL BA1800

U.S. Patent

I

(o]
=4

|

-
es]
v

X
~
4

6 "Old

JNEA 1850 a8yl Ul Asy
paydlious eyl 8I0IS

1

Asx
abeims syl Suzygn

fa!

Aey oy 3ohioue JineA Jasn su) Ul Ay
» paIGAIDUS B SIS
Aay efesois B \ﬁ
sonpoid 03 promssed Aay oyand sy} Buzynn
10 ysey sjenoes Aoy sy idAus
JB8D S JOsn Siy;
103 piomssed BAGIRd 104 AeY onqnd aasiiel

Ay
gnd

piomssed

Asy 1dAIDus O) pouiBul sUILLISIBD

1

)

SIS O Ay 8AIB08M

I

US 9,413,529 B2

Sheet 9 of 13

Aug. 9,2016

U.S. Patent

Aowiaut (NSQ) yaomsy
adeios pasiadap

b 'Ol

i
i
i
43 w
i
i
i
{ t
...... uaunsg i« w .
13 TR eH
!
T 40 OO S
“ u sjeudis
; sSajaAM
® !
! -
@ ! e
@ “ ALOMIBN
i
!
{
;
i
e CUUNG e
EH LTS
i
H RO 2y
_ -
T 1HUh g - H Z V—WCMwwm
EL . bopeoys S3RBM
!
11111111111111 d S
T sjeudis
$53JIUM

uappow | (6L N
ssopn g sags
®
®
&
zempow (L6
SSRSIM 7 2sys
SSa|BIM T a1

43
Ex L)
N5

3ol

Suissancig
Sa

7T o3inep sasn

US 9,413,529 B2

Sheet 10 of 13

Aug. 9,2016

U.S. Patent

Wiird
Aeidsiq

ob "ol

Y

4

¥
vE Buissanoid
5d

37 2102 gunndwos

86T safeld

,.
t
!
t
t
!
t
i

7¢ Asowaw (NSQ) sHomiau e3es01s pasiadsip

P7 Jiomisu

¥
7% 322193 NST

&

¥

A

7T g 9siAsp Jasn

96T
giaule)

¥

07 nun Jussaooud
Aptidaiut 982015

g7 2102
Bunndwoed

i

| 7€ 20epul NsQ

-\

¥
7€ 20rpalUl N5(

2

v

5G

B
v
[14]
g
o
o =4
I
-

gz 3400 Supndwaon

FF T a2iAlp Jasn

US 9,413,529 B2

Sheet 11 of 13

Aug. 9,2016

U.S. Patent

w0
<
~

[474

o™~
[a¥!

o3
(]
o

™
o

|

o)
o
™~

1e38anbal 8y 0} A9y Pl ol
paidiioep s puss
£
Aay
sbeiois ey Burzgn iesanbas ey o1 Aey |
foy pardAioue poidimep sy pues |OFC
sy wdhiosp %
ks Aoy
Aoy . a1zAud 8t BUIZYIN | ey
oBrI0)s B vonpoid Koy pojdhious 134
0} piomssed sy dhioep
IO USEY S1BINDED »
— 1 198 s} Joy o
1aSH S 40 oy oyenud sasmas | J5¢
piomssed sastial
: uonRoung
Guipoa

plomssed’

Aay

sugnd 0110 ofei0)8

posradsip

Aoy 3dAI08E 0] POUIBW DURLIDISP

i

sens Awy pedAIous PBpODUS 811 JO
JSGUING DIOUSSIL) SPO0aPp SU) 1SB9| 18 Bpo0sD

0

saoys Asy perdAioua papooue sy
$0 RGN DIDYSSIY] 8P0DSP B ISES] 1B SABLIR)

1

Jasanbes 8 w0l 15anbal A8y SAsU8) SBAIBDSI

I

|

Q!
bt
o

|

o~
o

HeA
IS8 BL) Ul S80S ASY
pajdlious sy 91018

1

Az By} 80is/epoTuUs

£} 'Old

1

Aoy
afeiois oy BuEnn
Az sy dAious

viz HNEA
JBSN 8uUY Ui 3824 A9y
paidAious suy alois

1

1

=77 Aoy pejdAicus
B3 S2YS/BPOOUS

Aoy obriois B
aunposd 0y PICMSSEC
10 USBY S)BIN0E0

1

Aoy ojand sy By
....... Aay syyydhious

1

%4
1

IS8 S

Q07 18sn sy

30} piomssed sasiad

piomssed

EriTd

103 Aoy oand sasiias

YOIIoUNg
Aoy FWPO 0L
agned 28u10)s posadsip

Aoy 10AI2U9 O} POLIaUL SULLISaD

BIDIS O} A8X SABIad

US 9,413,529 B2

Sheet 12 of 13

Aug. 9,2016

U.S. Patent

85l "old

BY wun BuiBeuepy sQ

sysenbal sy 0} Ay
pejdAasp e pues TT sinpojy BuIsssa0Ld

1

Aoy obeiols Jgysenbas 81y o As
ayj Buzgnn Aey s puos

paydhioue ey idAiosp podAnsp sy puss

¥ 1

Aay oyeaud
ayy Buizyan Aey
pexlhicus sy ydhioep

Aoy afiios B
sonposd o piomssed
1D SBY 21EIN0es

X i

D8N SHyY 40}
JAsn siy

Aay sieaud ansinsl
J0j puomased arsia

UaToung

Faipoeo

A
oygnd

plomssed
J0IID HFBICIS

postadsip

Az 1dAsoep 0} pouely suISIRR

T

sooys Aoy peydAInue pepoouD oy
10 IBQIUNU DICUSSIY apelap B 18e8] 1B apasad

4

sa0is Aoy peidAious papoous ai
10 JSGUINU DIOUSBIL} 8p0Jap B j8es) 12 aAs1al

1

ieyeenbail B wiol 1senbal Aoy aAsulss AR08

AP enaiasasihanaiies |

i
i
§
i
§
i
i
i
{
i
{
i
{
i
{
i
{
i
!
i
!
i
!
i
!
i
!
i
!
i
!
i
i
i
i

Y51 Ol
gt

.t

N bBuilbeuepy 30

198 BY) Ul S80S AsY
paydiious su 2408

1

36 ompopy Buissanoly

Aay sy sis/epOoSUS JneA

» 1SS 2L Ul saniis Aoy
paydAious sy aiois

Aoy

ebeiois au Bu A

oy sy ydiious fay paydiious
w BU) BONS/OROVUS

Aay afielois v \w

sonposd o) piomssed Asy oygnd ey Buszijpn
10 sy 3jEinden Koy suy idAious

1 T

JBSN S 850 SIY
10} plomssed sasisl 30y Aoy sugnd sAsuia

FOvIW

plomssed Aa

LUOLOURLY
BUIpos S04

onand afesogs pesiadsip

Aoy 1dAsous 0 poURU SUILLISIRPR

T

240)8 0} Aay ana0l

US 9,413,529 B2

Sheet 13 of 13

Aug. 9,2016

U.S. Patent

1 E

2 8og g e g eds § 8oty
483G LB L8 PR
DBy G eois geas g 90HG
G eals 5803 5 e G o0lg
P BoE pesys yess ¥ 9018
£ oas geMg £ eg € 90Hg
2 B3 TASH Z 8oy AN
ey L BIg L Bg L 20kg
8/8 L8 9/8 G/e

BIOLSSIL) epodep

PIOUSAIYY BPODED

T

pioyssiy] epooep

proysany epooep

US 9,413,529 B2

1
DISTRIBUTED STORAGE NETWORK AND
METHOD FOR STORING AND RETRIEVING
ENCRYPTION KEYS

CROSS REFERENCE TO RELATED PATENTS

The present U.S. Utility patent application claims priority
under 35 USC §120 as a continuation-in-part (CIP) of co-
pending patent application entitled “DISTRIBUTED STOR-
AGE NETWORK AND METHOD FOR ENCRYPTING
AND DECRYPTING DATA USING HASH FUNCTIONS,”
having a filing date of Jan. 8, 2013, and a Ser. No. of 13/736,
848, which is a continuation of U.S. Utility patent application
Ser. No. 12/814,467 entitled “DISTRIBUTED STORAGE
NETWORK AND METHOD FOR ENCRYPTING AND
DECRYPTING DATA USING HASH FUNCTIONS,” hav-
ing a filing date of Jun. 13, 2010, now U.S. Pat. No. 8,351,600,
which claims priority pursuant to 35 U.S.C. §119(e) to U.S.
Provisional Application Ser. No. 61/256,411, entitled “DIS-
TRIBUTED STORAGE NETWORK DATA PROCESS-
ING,” filed Oct. 30, 2009, expired, all of which are hereby
incorporated herein by reference in their entirety and made
part of the present U.S. Utility patent application for all pur-
poses.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

Not Applicable

INCORPORATION-BY-REFERENCE OF
MATERIAL SUBMITTED ON A COMPACT DISC

Not Applicable
BACKGROUND

1. Technical Field

This present disclosure relates generally to computing and
more particularly to storage of information.

2. Description of Related Art

Computing systems are known to communicate, process,
and store data. Such computing systems range from wireless
smart phones to data centers that support millions of web
searches, stock trades, or on-line purchases every day. Com-
puting processing is known to manipulate data from one form
into another. For instance, raw picture data from an image
sensor may be compressed, or manipulated, in accordance
with a picture compression standard to produce a standard-
ized compressed picture that can be saved or shared with
others. Computer processing capability continues to advance
as processing speed advances and software applications that
perform the manipulation become more sophisticated.

With recent advances in computing processing speed and
communication speed, computers may manipulate real time
media from voice to streaming high definition (HD) video.
Purpose-built communications devices, like the cell phone,
are being replaced or augmented by more general-purpose
information appliances. For example, smart phones can sup-
port telephony communications but they are also capable of
text messaging, and accessing the internet to perform func-
tions including email, web browsing, remote applications
access, and media communications. Media communications
may include telephony voice, image transfer, music files,
video files, real time video streaming, and more.

Each type of computing system is constructed, and hence
operates, in accordance with one or more communication,

20

25

30

35

40

45

55

65

2

processing, and storage standards. With such standards, and
with advances in technology, more and more of the global
information content is being successfully converted into elec-
tronic formats and consumed by users in these electronic
formats. For example, more digital cameras are now being
sold than film cameras, thus producing more digital pictures
that are shared and viewed electronically. High growth rates
have consistently been observed for web-based program-
ming. Web-based programming is electronically distributing
among billions of users a large amount of content over the
Internet and this content was, until recently, all broadcast by
just a few entities over the air television stations and cable
television providers. Digital content standards, such as used
in pictures, papers, books, video entertainment, home video,
all enable this global transformation to a digital format. Elec-
tronic content pervasiveness is producing increasing
demands on the storage function of computing systems.

A typical computer storage function includes one or more
memory devices that match the needs of the various opera-
tional aspects of the processing and communication func-
tions. For example, a memory device may include solid-state
NAND flash, random access memory (RAM), read only
memory (ROM), a mechanical hard disk drive, or other types
of storage. Each type of memory device has a particular
performance range, use case, operational environment, and
normalized cost. The computing system architecture opti-
mizes the use of one or more types of memory devices to
achieve the desired functional, cost, reliability, performance
goals, etc. of the computing system. Generally, the imme-
diacy of access dictates what type of memory device is used.
For example, RAM memory can be accessed in any random
order, all with a constant response time. By contrast, memory
device technologies that require physical movement such as
magnetic discs, tapes, and optical discs, have a variable
response times as the physical movement can take longer than
the data transfer, but often these devices can store larger
volumes of data in a reliable manner, long-term manner.

Each type of computer storage system is constructed, and
hence operates, in accordance with one or more storage stan-
dards. For instance, computer storage systems may operate in
accordance with one or more standards including, but not
limited to network file system (NFS), flash file system (FFS),
disk file system (DFS), small computer system interface
(SCSI), internet small computer system interface (iSCSI), file
transfer protocol (FTP), and web-based distributed authoring
and versioning (WebDAV). An operating systems (OS) and
storage standard may specify the data storage format and
interface between the processing subsystem and the memory
devices. The interface may specify a structure, such as direc-
tories and files. Typically, a memory controller provides an
interface function between the processing function and
memory devices. As new storage systems are developed, the
memory controller functional requirements may change to
adapt to new standards.

Memory devices are subject to failure and will eventually
fail, especially those memory devices that utilize technolo-
gies that require physical movement, like a disc drive. For
example, it is not uncommon for a disc drive to suffer from bit
level corruption on a regular basis, or suffer from a complete
drive failure after an average of three years of use. One com-
mon solution is to utilize more costly disc drives that have
higher quality internal components. Another solution is to
utilize multiple levels of redundant disc drives to abate these
issues by replicating the data into two or more copies. One
such redundant drive approach is called redundant array of
independent discs (RAID). Multiple physical discs comprise
an array where parity data is added to the original data before

US 9,413,529 B2

3

storing the data across the array. The parity is calculated such
that the failure of one or more discs will not result in the loss
of the original data. The original data can be reconstructed
from the other working discs if one or more discs fails. RAID
5 uses three or more discs to protect data from the failure of
any one disc. The parity and redundancy overhead reduces the
capacity of what three independent discs can store by one
third (n-1=3-2=2 discs of capacity using 3 discs). RAID 6
can recover from a loss of two discs and requires a minimum
of four discs with an efficiency ofn-2. Typical RAID systems
utilize a RAID control to encode and decode the data across
the array.

The drawbacks of the RAID approach include effective-
ness, efficiency, and security. As more discs are added, the
probability of one or two discs failing rises and is not negli-
gible, especially if the more-desirable and less-costly discs
are used. When one disc fails, it should be immediately
replaced and the data reconstructed before a second drive
fails, whereby data full recovery is no longer an option. To
provide high reliability over a long time period, it is also
common to minor RAID arrays at different physical loca-
tions, especially if the RAID array is part of a national level
computing system with occasional site outages. Unautho-
rized file access becomes a more acute problem when whole
copies of the same file are replicated in many locations/
geographies, either onjust one storage system site or at two or
more sites. In light of the effectiveness, the efficiency of
dedicating 1 to 2 discs per array for the RAID data-recovery
overhead is an issue.

Therefore, a need exists to provide a data storage solution
that provides more effective timeless continuity of data, mini-
mizes adverse effects of multiple memory elements failures,
provides improved security, can be adapted to a wide variety
of storage system standards and is compatible with current
and anticipated computing and communications systems.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWING(S)

FIG. 1 is a schematic block diagram of an embodiment of
a computing system in accordance with the present disclo-
sure;

FIG. 2 is a schematic block diagram of an embodiment of
a computing core in accordance with the present disclosure;

FIG. 3 is a schematic block diagram of an embodiment of
a distributed storage processing unit in accordance with the
present disclosure;

FIG. 4 is a schematic block diagram of an embodiment of
a grid module in accordance with the present disclosure;

FIG. 5 is a diagram of an example embodiment of error
coded data slice creation in accordance with the present dis-
closure;

FIG. 6 is a flowchart illustrating the segmentation of data in
the system(s) taught herein;

FIG. 7 is a flowchart illustrating the encryption of data in
the system(s) taught herein;

FIG. 8 is a flowchart illustrating the decryption of data in
the system(s) taught herein;

FIG. 9 is a flowchart illustrating the storing of an encryp-
tion key in the system(s) taught herein;

FIG. 10 s a flowchart illustrating the retrieval of an encryp-
tion key in the system(s) taught herein;

FIG. 11 is a schematic block diagram of another embodi-
ment of a computing system in accordance with the present
disclosure;

20

25

30

40

45

55

60

4

FIG. 12 is a schematic block diagram of another embodi-
ment of a computing system in accordance with the present
disclosure;

FIG. 13 is a flowchart illustrating another embodiment for
storing an encryption key in the system(s) taught herein;

FIG. 14 is a flowchart illustrating another embodiment for
the retrieval of an encryption key in the system(s) taught
herein;

FIGS. 15A and 15B, collectively, are a schematic block
diagram of an embodiment of a computing system in accor-
dance with the present disclosure; and

FIG. 16 is a diagram of an example embodiment illustrat-
ing the retrieval of an encryption key in the system(s) taught
herein.

DETAILED DESCRIPTION

FIG. 1 is a schematic block diagram of a computing system
10 that includes one or more of a first type of user device(s)
12, one or more of a second type of user device(s) 14, at least
one distributed storage (DS) processing unit 16, at least one
DS managing unit 18, at least one storage integrity processing
unit 20, and a distributed storage network (DSN) memory 22
coupled via a network 24. The network 24 may include one or
more wireless and/or wire-lined communication systems,
including one or more private intranet systems and/or public
internet systems; and/or one or more local area networks
(LAN) and/or wide area networks (WAN).

The DSN memory 22 includes a plurality of distributed
storage (DS) units 36 for storing data for the system. Each of
the DS units 36 includes a processing module and memory
and may be located at a geographically different site than the
other DS units (e.g., one in Chicago, one in Milwaukee, one in
Tokyo, one in Paris, etc.). The processing module may be a
single processing device or a plurality of processing devices.
Such a processing device may be a microprocessor, micro-
controller, graphics processing unit, digital signal processor,
microcomputer, central processing unit, field programmable
gate array, programmable logic device, state machine, logic
circuitry, analog circuitry, digital circuitry, and/or any device
that manipulates signals (analog and/or digital) based on hard
coding of the circuitry and/or operational instructions. The
processing module may have an associated memory and/or
memory element, which may be a single memory device, a
plurality of memory devices, and/or embedded circuitry of
the processing module. Such a memory device may be a
read-only memory, random access memory, volatile memory,
non-volatile memory, static memory, dynamic memory, flash
memory, cache memory, and/or any device that stores digital
or computer information. Note that if the processing module
includes more than one processing device, the processing
devices may be centrally located (e.g., directly coupled
together via a wired and/or wireless bus structure) or may be
located in a distributed fashion (e.g., cloud computing via
indirect coupling via a local area network and/or a wide area
network, peer-to-peer, etc.). Further note that when the pro-
cessing module implements one or more of its functions via a
state machine, analog circuitry, digital circuitry, and/or logic
circuitry, the memory and/or memory element(s) storing the
corresponding operational instructions may be embedded
within, or external to, the circuitry comprising the state
machine, analog circuitry, digital circuitry, and/or logic cir-
cuitry. Still further note that the memory element stores, and
the processing module executes, hard-coded and/or opera-
tional instructions corresponding to at least some of the steps
and/or functions illustrated in FIGS. 1-16.

US 9,413,529 B2

5

Each of the user devices 12-14, the DS processing unit 16,
the DS managing unit 18, and the storage integrity processing
unit 20 may be a portable computing device (e.g., one or more
of'a social networking device, a gaming device, a cell phone,
atablet, a netbook, a smart phone, a personal digital assistant,
a digital music player, a digital video player, a laptop com-
puter, a handheld computer, a video game controller, and/or
any other portable device that includes a computing core)
and/or a fixed computing device (e.g., one or more of a per-
sonal computer, a workstation, a computer server, a cable
set-top box, a satellite receiver, a television set, a printer, a fax
machine, home entertainment equipment, automotive enter-
tainment device, industrial controls, a video game console,
and/or any type of home or office computing equipment).
Such a portable or fixed computing device includes a com-
puting core 26 and one or more interfaces 30, 32, and/or 33.
An embodiment of the computing core 26 will be described
with reference to FIG. 2.

With respect to the interfaces, each of the interfaces 30-33
includes software and/or hardware to support one or more
communication links via the network 24 and/or directly. For
example, interfaces 30 support a communication link (wired,
wireless, direct, via a LAN, via the network 24, etc.) between
the first type of user device 14 and the DS processing unit 16.
As another example, DSN interface 32 supports a plurality of
communication links via the network 24 between the DSN
memory 22 and the DS processing unit 16, the first type of
user device 12, and/or the storage integrity processing unit 20.
As yet another example, interface 33 supports a communica-
tion link between the DS managing unit 18 and any one of the
other devices and/or units 12, 14, 16, 20, and/or 22 via the
network 24.

In general and with respect to data storage, the system 10
supports three primary functions: distributed network data
storage management, distributed data storage and retrieval,
and data storage integrity verification. In accordance with
these three primary functions, data can be stored in a distrib-
uted manner in a plurality of physically different locations
and subsequently retrieved in a reliable and secure manner
regardless of failures of individual storage devices, failures of
network equipment, the duration of storage, the amount of
data being stored, attempts at hacking the data, etc.

The DS managing unit 18 performs distributed network
data storage management functions, which include establish-
ing distributed data storage parameters, performing network
operations, performing network administration, and/or per-
forming network maintenance. The DS managing unit 18
establishes the distributed data storage parameters (e.g., allo-
cation of virtual DSN memory space, distributed storage
parameters, security parameters, billing information, user
profile information, etc.) for one or more of the user devices
12-14 (e.g., established for individual devices, established for
a user group of devices, established for public access by the
user devices, etc.). For example, the DS managing unit 18
coordinates the creation of a vault (e.g., a virtual memory
block) within the DSN memory 22 for a user device (for a
group of devices, or for public access). The DS managing unit
18 also determines the distributed data storage parameters for
the vault. In particular, the DS managing unit 18 determines a
number of slices (e.g., the number that a data segment of a
data file and/or data block is partitioned into for distributed
storage) and a read threshold value (e.g., the minimum num-
ber of valid slices required to reconstruct the full and origi-
nally-stored data segment).

As another example, the DS managing module 18 creates
and stores, locally or within the DSN memory 22, user profile
information. The user profile information includes one or

20

40

45

55

6

more of authentication information, permissions, and/or the
security parameters. The security parameters may include
one or more of encryption/decryption scheme, one or more
encryption keys, key generation scheme, and data encoding/
decoding scheme.

As yet another example, the DS managing unit 18 creates
billing information for a particular user, user group, vault
access, public vault access, etc. For instance, the DS manag-
ing unit 18 tracks the number of times a user accesses a private
vault and/or public vaults, which can be used to generate a
per-access bill. In another instance, the DS managing unit 18
tracks the amount of data stored and/or retrieved by a user
device and/or a user group, which can be used to generate a
per-data-amount bill.

The DS managing unit 18 also performs network opera-
tions, network administration, and/or network maintenance.
As at least part of performing the network operations and/or
administration, the DS managing unit 18 monitors perfor-
mance of the devices and/or units of the system 10 for poten-
tial failures, determines the devices and/or unit’s activation
status, determines the devices’ and/or units’ loading, and any
other system level operation that affects the performance
level of the system 10. For example, the DS managing unit 18
receives and aggregates network management alarms, alerts,
errors, status information, performance information, and
messages from the devices 12-14 and/or the units 16, 20, 22.
For example, the DS managing unit 18 receives a simple
network management protocol (SNMP) message regarding
the status of the DS processing unit 16.

The DS managing unit 18 performs the network mainte-
nance by identifying equipment within the system 10 that
needs replacing, upgrading, repairing, and/or expanding. For
example, the DS managing unit 18 determines that the DSN
memory 22 needs more DS units 36 or that one or more of the
DS units 36 needs updating, software upgrades, more
memory, etc.

The second primary function (i.e., distributed data storage
and retrieval) begins and ends with a user device 12-14. For
instance, if a second type of user device 14 has a data file 38
and/or data block 40 to store in the DSN memory 22, it send
the data file 38 and/or data block 40 to the DS processing unit
16 via its interface 30. As will be described in greater detail
with reference to FIG. 2, the interface 30 functions to mimic
a conventional operating system (OS) file system interface
(e.g., network file system (NFS), flash file system (FFS), disk
file system (DFS), file transfer protocol (FTP), web-based
distributed authoring and versioning (WebDAV), etc.) and/or
a block memory interface (e.g., small computer system inter-
face (SCSI), internet small computer system interface
(iSCSI), etc.). In addition, the interface 30 may attach a user
identification code (ID) to the data file 38 and/or data block
40.

The DS processing unit 16 receives the data file 38 and/or
data block 40 via its interface 30 and performs a distributed
storage (DS) process 34 thereon (e.g., an error-coding dis-
persal storage function). The DS processing 34 begins by
partitioning the data file 38 and/or data block 40 into one or
more data segments, which is represented as Y data segments.
For example, the DS processing 34 may partition the data file
38 and/or data block 40 into a fixed byte size segment (e.g., 2"
to 2” bytes, where n=>2) or a variable byte size (e.g., change
byte size from segment to segment, or from groups of seg-
ments to groups of segments, etc.).

For eachoftheY data segments, the DS processing 34 error
encodes (e.g., forward error correction (FEC), information
dispersal algorithm, or error correction coding) and slices (or
slices then error encodes) the data segment into a plurality of

US 9,413,529 B2

7

error coded (EC) data slices 42-48, which is represented as X
slices per data segment in the Y data segments. The number of
slices (X) per segment, which corresponds to a number of
pillars n, is set in accordance with the distributed data storage
parameters and the error coding scheme. For example, if a
Reed-Solomon (or other FEC scheme) is used in an n/k sys-
tem, then a data segment is divided into n slices, where k
number of slices is needed to reconstruct the original data
(i.e., k is the threshold). As a few specific examples, the n/k
factor may be 5/3; 6/4; 8/6; 8/5; 16/10.

For each slice 42-48, the DS processing unit 16 creates a
unique slice name and appends it to the corresponding slice
42-48. The slice name includes universal DSN memory
addressing routing information (e.g., virtual memory
addresses in the DSN memory 22) and user-specific informa-
tion (e.g., user ID, file name, data block identifier, etc.).

The DS processing unit 16 transmits the plurality of EC
slices 42-48 to a plurality of DS units 36 of the DSN memory
22 via the DSN interface 32 and the network 24. The DSN
interface 32 formats each of the slices for transmission via the
network 24. For example, the DSN interface 32 may utilize an
internet protocol (e.g., TCP/IP, etc.) to packetize the slices
42-48 for transmission via the network 24.

The number of DS units 36 receiving the slices 42-48 is
dependent on the distributed data storage parameters estab-
lished by the DS managing unit 18. For example, the DS
managing unit 18 may indicate that each slice is to be stored
in a different DS unit 36. As another example, the DS man-
aging unit 18 may indicate that like slice numbers of different
data segments are to be stored in the same DS unit 36. For
example, the first slice of each of the data segments is to be
stored in a first DS unit 36, the second slice of each of the data
segments is to be stored in a second DS unit 36, etc. In this
manner, the data is encoded and stored in a distributed manner
atphysically diverse locations to improved data storage integ-
rity and security. Further examples of encoding the data seg-
ments will be provided with reference to one or more of FIGS.
2-16.

Each DS unit 36 that receives a slice 42-48 for storage
translates the virtual DSN memory address of the slice into a
local physical address for storage. Accordingly, each DS unit
36 maintains a virtual-to-physical memory mapping to assist
in the storage and retrieval of data.

The first type of user device 12 performs a similar function
to store data in the DSN memory 22 with the exception that it
includes the DS processing. As such, the device 12 encodes
and slices the data file and/or data block it has to store. The
device then transmits the slices 35 to the DSN memory via its
DSN interface 32 and the network 24.

For a second type of user device 14 to retrieve a data file or
data block from memory, it issues a read command via its
interface 30 to the DS processing unit 16. The DS processing
unit 16 performs the DS processing 34 to identify the DS units
36 storing the slices of the data file and/or data block based on
the read command. The DS processing unit 16 may also
communicate with the DS managing unit 18 to verify that the
user device 14 is authorized to access the requested data.

Assuming that the user device 14 is authorized to access the
requested data, the DS processing unit 16 issues slice read
commands to at least a threshold number of the DS units 36
storing the requested data (e.g., to at least 10 DS units for a
16/10error coding scheme). Each of the DS units 36 receiving
the slice read command, verifies the command, accesses its
virtual to physical memory mapping, retrieves the requested
slice, or slices, and transmits it to the DS processing unit 16.

Once the DS processing unit 16 has received a read thresh-
old number of slices for a data segment, it performs an error

10

20

30

40

45

8

decoding function and de-slicing to reconstruct the data seg-
ment. When Y number of data segments has been recon-
structed, the DS processing unit 16 provides the data file 38
and/or data block 40 to the user device 14. Note that the first
type of user device 12 performs a similar process to retrieve a
data file and/or data block.

The storage integrity processing unit 20 performs the third
primary function of data storage integrity verification. In
general, the storage integrity processing unit 20 periodically
retrieves slices 45, and/or slice names, of a data file or data
block of a user device to verify that one or more slices have
not been corrupted or lost (e.g., the DS unit failed). The
retrieval process mimics the read process previously
described.

If the storage integrity processing unit 20 determines that
one or more slices is corrupted or lost, it rebuilds the cor-
rupted or lost slice(s) in accordance with the error-coding
scheme. The storage integrity processing unit 20 stores the
rebuild slice, or slices, in the appropriate DS unit(s) 36 in a
manner that mimics the write process previously described.

FIG. 2 is a schematic block diagram of an embodiment of
a computing core 26 that includes a processing module 50, a
memory controller 52, main memory 54, a video graphics
processing unit 55, an input/output (TO) controller 56, a
peripheral component interconnect (PCI) interface (or
another type of interface) 58, at least one 1O device interface
module 62, a read only memory (ROM) basic input output
system (BIOS) 64, and one or more memory interface mod-
ules. The memory interface module(s) includes one or more
of'auniversal serial bus (USB) interface module 66, a host bus
adapter (HBA) interface module 68, a network interface mod-
ule 70, a flash interface module 72, a hard drive interface
module 74, and a DSN interface module 76. Note the DSN
interface module 76 and/or the network interface module 70
may function as the interface 30 of the user device 14 of F1G.
1. Further note that the IO device interface module 62 and/or
the memory interface modules may be collectively or indi-
vidually referred to as 1O ports.

The processing module 50 may be a single processing
device or a plurality of processing devices. Such a processing
device may be a microprocessor, micro-controller, digital
signal processor, microcomputer, central processing unit,
field programmable gate array, programmable logic device,
state machine, logic circuitry, analog circuitry, digital cir-
cuitry, and/or any device that manipulates signals (analog
and/or digital) based on hard coding of the circuitry and/or
operational instructions. The processing module 50 may have
anassociated memory and/or memory element, which may be
a single memory device, a plurality of memory devices, and/
or embedded circuitry of the processing module 50. Such a
memory device may be a read-only memory, random access
memory, volatile memory, non-volatile memory, static
memory, dynamic memory, flash memory, cache memory,
and/or any device that stores digital information. Note that if
the processing module 50 includes more than one processing
device, the processing devices may be centrally located (e.g.,
directly coupled together via a wired and/or wireless bus
structure) or may be located in a distributed manner (e.g.,
cloud computing via indirect coupling via a local area net-
work and/or a wide area network). Further note that when the
processing module 50 implements one or more of its func-
tions via a state machine, analog circuitry, digital circuitry,
and/or logic circuitry, the memory and/or memory element
storing the corresponding operational instructions may be
embedded within, or external to, the circuitry comprising the
state machine, analog circuitry, digital circuitry, and/or logic
circuitry. Still further note that, the memory element stores,

US 9,413,529 B2

9

and the processing module 50 executes, hard coded and/or
operational instructions corresponding to at least some of the
steps and/or functions illustrated in FIGS. 1-16.

FIG. 3 is a schematic block diagram of an embodiment of
adispersed storage (DS) processing module 34 of user device
12 and/or of the DS processing unit 16. The DS processing
module 34 includes a gateway module 78, an access module
80, a grid module 82, and a storage module 84. The DS
processing module 34 may also include an interface 30 and
the DSnet interface 32 and/or the interfaces may be part of
user 12 or of the DS processing unit 14. The DS processing
module 34 may further include a bypass/feedback path
between the storage module 84 and the gateway module 78.

In an example of storing data in one embodiment, the
gateway module 78 receives an incoming data object (e.g., a
data file, a data block, an EC data slice, etc.) that includes a
user 1D field 86, an object name field 88, and the data field/
object 40. The gateway module 78 authenticates the user
associated with the data object by verifying the user ID 86
with the managing unit 18 and/or another authenticating unit.
When the user is authenticated, the gateway module 78
obtains user information from the management unit 18, the
user device, and/or the other authenticating unit. The user
information includes a vault identifier, operational param-
eters, and user attributes (e.g., user data, billing information,
etc.) as shown in FIG. 3. A vault identifier identifies a vault,
which is a virtual memory space that maps to a set of DS
storage units 36. For example, vault 1 (i.e., user 1’s DSN
memory space) includes eight DS storage units (X=8 wide)
and vault 2 (i.e., user 2’s DSN memory space) includes six-
teen DS storage units (X=16 wide). The operational param-
eters may include an error coding algorithm, the width n
(number of pillars X or slices per segment for this vault), a
read threshold T, an encryption algorithm, a slicing param-
eter, a compression algorithm, an integrity check method,
caching settings, parallelism settings, and/or other param-
eters that may be used to access the DSN memory layer.

The gateway module uses the user information to assign a
source name to the data. For instance, the gateway module 60
determines the source name of the data object 40 based on the
vault identifier and the data object. For example, the source
name may contain a data name (block number or a file num-
ber), the vault generation (gen) number, the reserved field
(resv), an optional file ID, and the vault identifier (ID). The
data name may be randomly assigned but is associated with
the user data object 40.

The access module 80 receives the data object 40 and
creates a series of data segments 1 throughY 90-92 therefrom.
The number of segments Y may be chosen or randomly
assigned based on a selected segment size and the size of the
data object. For example, if the number of segments is chosen
to be a fixed number, then the size of the segments varies as a
function of the size of the data object. For instance, if the data
object is an image file of 4,194,304 eight bit bytes (e.g.,
33,554,432 bits) and the number of segments Y=131,072,
then each segment is 256 bits or 32 bytes. As another example,
if segment sized is fixed, then the number of segments Y
varies based on the size of data object. For instance, if the data
object is an image file 0f 4,194,304 bytes and the fixed size of
each segment is 4,096 bytes, the then number of segments
Y=1,024. Note that each segment is associated with the
source name.

The grid module 82 may pre-manipulate (e.g., compres-
sion, encryption, cyclic redundancy check (CRC), etc.) each
of the data segments before performing an error coding func-
tion of the error coding dispersal storage function to produce
a pre-manipulated data segment. The grid module 82 then

5

10

15

20

25

30

35

40

45

50

55

60

65

10

error encodes (e.g., Reed-Solomon, Convolution encoding,
Trellis encoding, etc.) the data segment or pre-manipulated
data segment into X error coded data slices 42-44. The grid
module 82 determines a unique slice name for each error
coded data slice and attaches it to the data slice.

The value X, or the number of pillars (e.g., X=16), is
chosen as a parameter of the error coding dispersal storage
function. Other parameters of the error coding dispersal func-
tion include a read threshold T, a write threshold W, etc. The
read threshold (e.g., T=10, when X=16) corresponds to the
minimum number of error-free error coded data slices
required to reconstruct the data segment. In other words, the
DS processing module 34 can compensate for X-T (e.g.,
16-10=6) missing error coded data slices per data segment.
The write threshold W corresponds to a minimum number of
DS storage units that acknowledge proper storage of their
respective data slices before the DS processing module indi-
cates proper storage of the encoded data segment. Note that in
some embodiments the write threshold is greater than or
equal to the read threshold for a given number of pillars (X).

The grid module 82 also determines which of the DS stor-
age units 36 will store the EC data slices based on a dispersed
storage memory mapping associated with the user’s vault
and/or DS storage unit 36 attributes. The DS storage unit
attributes includes availability, self-selection, performance
history, link speed, link latency, ownership, available DSN
memory, domain, cost, a prioritization scheme, a centralized
selection message from another source, a lookup table, data
ownership, and/or any other factor to optimize the operation
of'the computing system. Note that the number of DS storage
units 36 is equal to or greater than the number of pillars (e.g.,
X) so that no more than one error coded data slice of the same
data segment is stored on the same DS storage unit 36. Further
note that EC data slices of the same pillar number but of
different segments (e.g., EC data slice 1 of data segment 1 and
EC data slice 1 of data segment 2) may be stored on the same
or different DS storage units 36.

The storage module 84 performs an integrity check on the
EC data slices and, when successful, transmits the EC data
slices 1 through X of each segment 1 through Y to the DS
Storage units. Each of the DS storage units 36 stores its EC
data slice and keeps a table to convert the virtual DSN address
of'the EC data slice into physical storage addresses.

In an example of a read operation, the user device 12 and/or
14 sends a read request to the DS processing unit 314, which
authenticates the request. When the request is authentic, the
DS processing unit 34 sends a read message to each of the DS
storage units 36 storing slices of the data object being read.
The slices are received via the DSnet interface 32 and pro-
cessed by the storage module 84, which performs a parity
check and provides the slices to the grid module 82 when the
parity check was successtul. The grid module 82 decodes the
slices in accordance with the error coding dispersal storage
function to reconstruct the data segment. The access module
80 reconstructs the data object from the data segments and the
gateway module 78 formats the data object for transmission
to the user device.

FIG. 4 is a schematic block diagram of an embodiment of
a grid module 82 that includes a control unit 73, a pre-data
manipulator 75, an encoder 77, a slicer 79, a post-data
manipulator 81, a pre-data de-manipulator 83, a decoder 85,
ade-slicer 87, and/or a post-data de-manipulator 89. Note that
the control unit 73 may be partially or completely external to
the grid module 82. For example, the control unit 73 may be
part of the computing core at a remote location, part of a user
device, part of the DS managing unit 18, or distributed
amongst one or more DS storage units.

US 9,413,529 B2

11

In an example of write operation, the pre-data manipulator
75 receives a data segment 90-92 and a write instruction from
an authorized user device. The pre-data manipulator 75 deter-
mines if pre-manipulation of the data segment 90-92 is
required and, if so, what type. The pre-data manipulator 75
may make the determination independently or based on
instructions from the control unit 73, where the determination
is based a computing system-wide predetermination, a table
lookup, vault parameters associated with the user identifica-
tion, the type of data, security requirements, available DSN
memory, performance requirements, and/or other metadata.

Once a positive determination is made, the pre-data
manipulator 75 manipulates the data segment 90-92 in accor-
dance with the type of manipulation. For example, the type of
manipulation may be compression (e.g., Lempel-Ziv-Welch,
Huffman, Golomb, fractal, wavelet, etc.), signatures (e.g.,
Digital Signature Algorithm (DSA), Elliptic Curve DSA,
Secure Hash Algorithm, etc.), watermarking, tagging,
encryption (e.g., Data Encryption Standard, Advanced
Encryption Standard, etc.), adding metadata (e.g., time/date
stamping, user information, file type, etc.), cyclic redundancy
check (e.g., CRC32), and/or other data manipulations to pro-
duce the pre-manipulated data segment.

The encoder 77 encodes the pre-manipulated data segment
92 using a forward error correction (FEC) encoder (and/or
other type of erasure coding and/or error coding) to produce
an encoded data segment 94. The encoder 77 determines
which forward error correction algorithm to use based on a
predetermination associated with the user’s vault, a time
based algorithm, user direction, DS managing unit direction,
control unit direction, as a function of the data type, as a
function of the data segment 92 metadata, and/or any other
factor to determine algorithm type. The forward error correc-
tion algorithm may be Golay, Multidimensional parity, Reed-
Solomon, Hamming, Bose Ray Chauduri Hocquenghem
(BCH), Cauchy-Reed-Solomon, or any other FEC encoder.
Note that the encoder 77 may use a different encoding algo-
rithm for each data segment 92, the same encoding algorithm
for the data segments 92 of a data object, or a combination
thereof.

The encoded data segment 94 is of greater size than the data
segment 92 by the overhead rate of the encoding algorithm by
a factor of d*(X/T), where d is size of the data segment 92, X
is the width or number of slices, and T is the read threshold. In
this regard, the corresponding decoding process can accom-
modate at most X-T missing EC data slices and still recreate
the data segment 92. For example, if X=16 and T=10, then the
data segment 92 will be recoverable as long as 10 or more EC
data slices per segment are not corrupted.

The slicer 79 transforms the encoded data segment 94 into
EC data slices in accordance with the slicing parameter from
the vault for this user and/or data segment 92. For example, if
the slicing parameter is X=16, then the slicer slices each
encoded data segment 94 into 16 encoded slices.

The post-data manipulator 81 performs, if enabled, post-
manipulation on the encoded slices to produce the EC data
slices. If enabled, the post-data manipulator 81 determines
the type of post-manipulation, which may be based on a
computing system-wide predetermination, parameters in the
vault for this user, a table lookup, the user identification, the
type of data, security requirements, available DSN memory,
performance requirements, control unit directed, and/or other
metadata. Note that the type of post-data manipulation may
include slice level compression, signatures, encryption, CRC,
addressing, watermarking, tagging, adding metadata, and/or
other manipulation to improve the effectiveness of the com-
puting system.

25

40

45

12

In an example of a read operation, the post-data de-ma-
nipulator 89 receives at least a read threshold number of EC
data slices and performs the inverse function of the post-data
manipulator 81 to produce a plurality of encoded slices. The
de-slicer 87 de-slices the encoded slices to produce an
encoded data segment 94. The decoder 85 performs the
inverse function of the encoder 77 to recapture the data seg-
ment 90-92. The pre-data de-manipulator 83 performs the
inverse function of the pre-data manipulator 75 to recapture
the data segment.

FIG. 5 is a diagram of an example of slicing an encoded
data segment 94 by the slicer 79. In this example, the encoded
data segment includes thirty-two bits, but may include more
orlessbits. The slicer 79 disperses the bits of the encoded data
segment 94 across the EC data slices in a pattern as shown. As
such, each EC data slice does not include consecutive bits of
the data segment 94 reducing the impact of consecutive bit
failures on data recovery. For example, if EC data slice 2
(which includes bits 1, 5,9, 13,17, 25, and 29) is unavailable
(e.g., lost, inaccessible, or corrupted), the data segment can be
reconstructed from the other EC data slices (e.g., 1,3 and 4 for
a read threshold of 3 and a width of 4).

FIG. 6 is a flowchart illustrating the segmentation of data
where the access module 80 of the DS processing system may
receive a data object 40, determine how to perform segmen-
tation, and segment the data object 40 into data segments in
accordance with the segmentation determination made by the
access module 80.

The method begins with the step 100 where the access
module 80 of FIG. 3 receives a data object 40 (also shown in
FIG. 3) and associated source name from the gateway module
78 or any other module of the system. The access module 80
determines the size in bytes (or some other quanta) of the data
object 40 where the determination is based on incoming
metadata, counting the data object bytes when all the data
object bytes have been received, and/or some other algorith-
mic method, via a step 102. The size determination can be
made dynamically as the data object is received by the access
module 80, or the size determination can be made after the full
receipt of the data object 40 is complete within (or associated
with) access module 60

The access module 80 may determine or associate meta-
data for the data object where the metadata may include one
or more of the data object size, a data type indicator, a priority
indicator, a security indicator, and/or auser ID, via a step 104.
This determination may be based on one or more of received
information appended to the data object, a lookup, a com-
mand, a predetermination, data object inspection, and/or a
user vault entry.

The access module 80 determines a segmentation approach
where the approach may include segmenting the data object
40 into equally sized fixed data segments 90-92 or segment-
ing the data object into variable sized data segments 90-92 via
steps 106, 108, 110, and/or 116. The determination may be
based on one or more of the metadata, a system loading
indicator, received information appended to the data object, a
lookup, a command, a predetermination, data object inspec-
tion, and/or a user vault entry. For example, the access module
80 may choose the fixed-segment-size approach when the
system loading indicator indicates light system loading or if
the loading history indicates relatively steady loading. In
another example, the access module 80 may choose the vari-
able approach when the system loading indicator indicates
currently heavy system loading such that the incremental load
(e.g., of storing the data object) may not adversely affect the
system loading. Note that fixed data segments may be sub-
stantially close in size but not identical in size. For example,

US 9,413,529 B2

13

if a 102 unit object was determined to be split into 4 fixed or
equal parts, the parts would likely be of sizes 25, 25, 26, and
26 units. This is the case because the whole does not divide
into equal fixed segments. Also, some segments may be
appended with header or other metadata that leads one seg-
ment to be slightly larger than others. Therefore, when using
the term “fixed” herein, the size may be slightly carrying from
segment to segment.

The access module 80 determines a fixed segment size
when the access module 80 determines the segmentation
approach of segmenting the data object into equally-sized
fixed data segments, via steps 106, 108,and 110 in FIG. 6. The
determination may be based on one or more of the metadata,
a system loading indicator, received information appended to
the data object, a lookup, a command, a predetermination,
data object inspection, and/or a user vault entry. For example,
the access module 80 may choose a smaller fixed segment
size when the system loading indicator indicates the system is
loading is heavier than average and choosing smaller segment
size will create less incremental loading than larger segments.

The access module 80 creates a header and appends the
header to the data object 40 per a step 112. In another embodi-
ment, the access module 80 appends the header to two or more
(e.g., as many as all) of the data segments 90-92 per the step
112. The header may include one or more of the data object
size, the metadata, the fixed data segment size, and/or the data
segmentation approach.

The access module 80 segments the data object 40 in accor-
dance with the data segmentation approach and the deter-
mined data segment sizes in the step 114 and sends the seg-
ments for further processing by the grid module 82 of FIG. 3.

The access module 80 determines or selects a variable
pattern when the access module 80 determines the segmen-
tation approach of segmenting the data object into variable
sized data segments, via steps 106, 108, and 116 in FIG. 6.
The variable pattern may be static, random, pseudo-random,
cyclical, or dynamic (e.g., the pattern may change to another
pattern over time or as a function of instantaneous system
loading). As examples, the variable pattern may start with
smaller segment sizes and ramp upwards in size over time.
The variable pattern may start with larger segment sizes and
ramp downwards in size over time. The variable pattern may
alternate between larger segment sizes and smaller segment
sizes over time. The variable pattern may vary sinusoidally or
via some other function over time or size. The variable pattern
determination may be based on one or more of the metadata,
a system loading indicator, received information appended to
the data object, a lookup, a command, a predetermination,
data object inspection, and/or a user vault entry. For example,
the access module 80 may choose a smaller fixed segment
size to start with and ramp upwards over time when the
system loading indicator indicates the system is loading is
heavier than average and choosing smaller segment size when
that choice will create less incremental loading than larger
segments.

The access module 80 creates a header and appends the
header to the data object in the step 118. In another embodi-
ment, the access module 80 appends the header to two or more
(e.g., as many as all) data segments in the step 118. The header
may include one or more of the data object size, the metadata,
the data segmentation approach, and/or the variable pattern.

The access module segments the data object in accordance
with the data segmentation approach and the determined vari-
able pattern in the step 120 and sends the segments for further
processing by the grid module 82 of FIG. 3.

Note that the same general computing structure taught
herein for enabling functions and modules via input and out-

10

15

20

25

30

35

40

45

50

55

60

65

14

put interface circuitry coupled to a central processing unit or
like one or more processing modules may be used to enable
operation of the access module 80 in whole or in part. In other
forms, these teachings herein can be used to enable the entire
DS processing unit 34, of which the access module may only
use a portion of the overall compute and memory capability of
the larger unit 34. Often the central processing unit or one or
more processing modules are coupled to one or more forms of
memory devices such as static random access memory,
dynamic random access memory, non-volatile memory,
cache memory, hard drives, optical storage, or other memory.

FIG. 7 is a flowchart illustrating the encryption of data
where the grid module 82 (see FIG. 3) of the DS processing
system receives a data segment 90-92 and encrypts the data
segment 90-92 prior to encoding and slicing each data seg-
ment to produce EC data slices 42-48 with improved security.
In particular, the grid module 82 may contain a pre-data
manipulator that may encrypt the data segment as taught
herein.

The method begins with the step 122 where the grid mod-
ule 82 receives one or more data segments 90-92 from the
access module 80 or any other module within the system. The
grid module 82 partitions the data segment 90 or 92 into a first
portion and second portion where the portions may be the
same or different sizes viaa step 124. In another embodiment,
the grid module may partition the data segment 90 or 92 into
more than two portions to obtain N portions where N is a finite
integer greater than two. These N portions may be of equal
sizes (or nearly equal if the segment does not divide evenly) or
different sizes. In yet another embodiment, the grid module
82 partitions the data segment 90 or 92 into two or more
portions with equal or non-equal sizes based on a partitioning
determination. The grid module 82 may determine the parti-
tioning based on a security procedure, a security indicator,
data object metadata, a system loading indicator, received
information appended to the data object, a lookup, a com-
mand, a predetermination, data object inspection, and/or a
user vault entry. For example, the security procedure may
indicate that the portion sizes will change with every data
segment by 5%. In other words, the first portion may grow by
5% and the second portion may shrink by 5% for the next data
segment, until the first portion is 100% and the second portion
is 0% in which case the security procedure may reverse the
process. In another example, even numbered data segments
may be partitioned into a 75% first portion and a 25% second
portion while odd numbered data segments may be parti-
tioned into a 15% first portion and an 85% second portion.

Basically, any function over time or any other variable may
be applied to the partitioning scheme so long as the sending
and receiving end are aware of the scheme so that encryption
and decryption may commence accurately. The function
applied may also appear random. Meaning, the sending and
receiving end may each contain signature analyzers that are
synced to each other, whereby the value of the signature
analyzer determines the size or fractional size of first and
second segments. For example, if a signature analyzer
sequence with a max value of 100 cycles through the follow-
ing sequence: 74, 12,32, 89, 54, then the first segment may be
set to contain 74% of the total data, 12% of the data, 32% of
the data and so on whereby the second segment contains the
remainder of the data.

The grid module calculates a first portion hash value for the
first portion in a step 126. The hash function type may be
stored in the user vault taught herein and associated with the
data segment, slice, or file being processed.

The grid module 82 may determine a first encryption algo-
rithm based on one or more of a user vault entry, a predeter-

US 9,413,529 B2

15

mination, acommand, and/or a table lookup utilizing the first
portion hash as an index. In a step 128, the grid module 82
then produces an encrypted second portion by encrypting the
second portion utilizing the first encryption algorithm and an
encryption key where the encryption key is based in whole or
in part on the hash value of the first portion. For example, the
encryption key may be equal to the first portion hash. In
another example, the encryption key may be a combination of
the first portion hash and a second number (e.g. a stored value
from the user vault, a calculated value) or may be the first
portion hash placed through further processing.

The grid module then calculates a hash of the encrypted
second portion via a step 130. The hash function type may be
stored in the user vault associated with the data segment. The
hash operations for the two segments may be the same or
different.

The grid module 82 may determine a second encryption
algorithm based on one or more of a user vault entry, a
predetermination, a command, and/or a table lookup utilizing
the hash of the encrypted second portion as an index per a step
132. The second encryption algorithm may be the same or
different than the first encryption algorithm. The grid module
82 then produces an encrypted first portion by encrypting the
first portion utilizing the second encryption algorithm and an
encryption key where the encryption key is based in whole or
in part on the hash of the encrypted second portion. For
example, the encryption key may be equal to the hash of the
encrypted second portion. In another example, the encryption
key may be a combination of the hash of the encrypted second
portion and a second number (e.g. a stored value from the user
vault, a calculated value) or post-processed in a similar man-
ner to the first portion hash.

The grid module 82 then combines the encrypted first
portion and the encrypted second portion to produce an
encrypted data segment in a step 134. Note that an improve-
ment of the method includes providing security with effi-
ciency where the size of the encrypted data segment is equal
to the size of the encrypted first portion summed with the size
of'the encrypted second portion (e.g., no extra bits). Note that
security is provided since the decryption method must be
known to decrypt the encrypted data segment. The method of
decryption is discussed in greater detail with reference to
FIG. 8 below.

Furthermore, the segmentation and encryption algorithms
taught herein can be applied to the segments through repeated
application. Specifically, if there are N partitions or portions,
then the algorithm may be run through the partitions or por-
tion up to N times to ensure an all or nothing property
(AONT) for the decryption operation. Without this process, if
a hacker gains half the data, and part of the other partitioning
(e.g., in a two way split) then some data can be yielded.
However, if after the steps of encrypting the latter half with
the hash of the former half, and encrypted the former half with
the hash of the latter, the process then encrypts the latter half
(again) with the hash of the encrypted former half, then the
process has ensured a true AONT, meaning that short of even
1 bit, the decryption process won’t be able decrypt any part of
the encrypted data, since one would need all of the former half
and all of the latter half to do so.

Also, the cipher mode taught with respectto FIGS. 7-8 may
in one embodiment not cause any additional expansion or
padding of the message/data. Such methods include Counter
Mode (CTR), Output Feedback Mode (OFB), Cipher Feed-
back Mode (CFB), or a stream cipher.

FIG. 8 is a flowchart illustrating the decryption of data
where the grid module 82 of the DS processing system rec-
reates an encrypted data segment (e.g. by retrieving EC data

10

15

20

25

30

35

40

45

50

55

60

65

16

slices, de-slicing the slices, and decoding the slices) and
decrypts the encrypted data segment to produce a recreated
decrypted data segment. In particular, the grid module’s pre-
data de-manipulator may decrypt the data segment.

The method begins with the step 136 wherein the grid
module’s pre-data de-manipulator receives an encrypted data
segment from the grid module decoder or any other module
within the distributed network storage system. The grid mod-
ule 82 partitions the encrypted data segment into an encrypted
first portion and an encrypted second portion in a step 138
where the portions may be the same or different sizes. In
another embodiment, the grid module partitions the
encrypted data segment into more than two portions. In yet
another embodiment, the grid module partitions the
encrypted data segment into two or more portions with equal
ornon-equal sizes based on a partitioning determination (e.g.,
the same as the encryption portioning determination) that
results in N partitions where N is a finite integer greater than
two. The grid module may determine the partitioning based
ona security procedure, a security indicator, data object meta-
data, a system loading indicator, received information
appended to the data object, a lookup, a command, a prede-
termination, data object inspection, and/or a user vault entry.
For example, the security procedure may indicate that the
portion sizes will change with every data segment by 5%. In
other words, the first portion may grow by 5% and the second
portion may shrink by 5% for the next data segment, until the
first portion is 100% and the second portion is 0% in which
case the security procedure may reverse the process. In
another example, even numbered encrypted data segments
may be partitioned into a 75% encrypted first portion and a
25% encrypted second portion while odd numbered data seg-
ments may be partitioned into a 15% encrypted first portion
and a 85% encrypted second portion. However, the partition-
ing performed by the decryptor is a function of (or is identical
to) the encryption partitioning used when encrypting this data
segment or data object. Also, the encryption and decryption
segmentation parameters may be set by data segment, data
object, data file, user, geographic location, address space, or
some other parameter.

The grid module 82 then calculates a hash of the encrypted
second portion in a step 140. The hash function type may be
stored in the user vault associated with the data segment.

The grid module 82 may then determine a second decryp-
tion algorithm based on one or more of a user vault entry, a
predetermination, a command, and/or a table lookup utilizing
the hash of the encrypted second portion as an index. How-
ever, the decryption algorithm must be compatible with the
original encryption operation (see FIG. 7). The grid module
82 produces a decrypted first portion by decrypting the
encrypted first portion utilizing the second decryption algo-
rithm and an encryption key where the encryption key is
based in whole or in part on the hash of the encrypted second
portion via a step 142. As an example, the encryption key may
be equal to the hash of the encrypted second portion. In
another example, the encryption key may be a combination of
the hash of the encrypted second portion and a second number
(e.g. a stored value from the user vault, a calculated value). In
other embodiments, the hash value is placed through algo-
rithmic processing of some sort to derive the encryption key
used herein.

The grid module 82 then calculates a decrypted first por-
tion hash by performing a hash on the decrypted first portion
via a step 144. The hash function type may be stored in the
user vault associated with the data segment.

The grid module 82 may determine a first decryption algo-
rithm based on one or more of a user vault entry, a predeter-

US 9,413,529 B2

17

mination, a command, and/or a table lookup utilizing the
decrypted first portion hash as an index. Again, the encryption
and decryption operations should be compatible. However,
the first decryption algorithm may be the same or different
than the second decryption algorithm. The grid module 82
produces a decrypted second portion by decrypting the sec-
ond portion utilizing the first encryption algorithm and an
encryption key where the encryption key is based in part on
the decrypted first portion hash, as shown in step 146. In one
example, the encryption key may be equal to the decrypted
first portion hash. In another example, the encryption key may
be a combination of the decrypted first portion hash and a
second number (e.g. a stored value from the user vault, a
calculated value).

The grid module 82 combines the decrypted first portion
and the decrypted second portion to produce a decrypted data
segment in a step 148 of FIG. 8. Note that an improvement of
this method includes providing security with efficiency where
the size of the encrypted data segment is equal to the size of
the encrypted first portion summed with the size of the
encrypted second portion (e.g., no extra bits). Note that secu-
rity is provided where the decryption method must be known
to decrypt the encrypted data segment.

FIG. 9 is a flowchart illustrating the storing of an encryp-
tion key where the DS managing unit may encrypt the encryp-
tion key prior to storing the encryption key.

Note that keys may be utilized to encrypt and/or decode
control information and/or data content. For example, a pub-
lic key may be utilized to encrypt a message from any source
to a target destination while a private key may be utilized just
by a key owner to decrypt the message for the destination
when the message is encrypted utilizing the public key. The
system may utilize such public/private key pairs for signing
integrity to authenticate units, modules, users, devices, and
transactions. In another example, a secret key may be utilized
to encrypt and/or decode data content associated with a secret
key owner. For example, a secret key may be utilized to
encrypt a series of data object data segments prior to encod-
ing, slicing, and storing EC data slices in the DSN memory.
The key owner may utilize the same secret key to subse-
quently decrypt retrieved, de-sliced, and decoded encrypted
data segments.

Note that the DS managing unit may enforce permissions
such thatretrieving and storing keys is controlled based on the
user ID, the system element ID, and a permissions list lookup.
For example, users may have permissions to retrieve and store
their own private, public, and secret keys. In another example,
users may have permissions to retrieve public keys. In yet
another example, the DS managing unit may have permis-
sions to retrieve and store all keys.

The method begins with the step 150 where the DS man-
aging unit receives a key to store from any other system
element. In step 152, the DS managing unit determines an
encryption method to encrypt the key to produce an encrypted
key. Note that the key may be stored in the DSN memory as
EC data slices of the encrypted key to provide improved
security.

The encryption methods include a public key method and a
password method (the methods will be described below) in
step 154. The DS managing unit determines the method to
encrypt the key based on one or more of user device connec-
tivity type (e.g., iSCI), a user vault setting, a command, an
operational parameter, availability of a public key, and/or
availability of a password. For example, the DS managing
unit may choose the public key method when the device
connectivity type is iSCI (e.g., no password with iSCI).

15

25

30

40

45

55

18

The DS managing unit retrieves a public key for the user (or
unit) in step 156 when the DS managing unit determines the
method to encrypt the key to be the public key method. The
DS managing unit may retrieve the public key from the user
vault or it may be included with the key to be stored.

The DS managing unit encrypts the key to be stored in step
158 to produce an encrypted key utilizing the public key and
an encryption algorithm based on the operational parameters
(e.g., stored in the user vault). The DS managing unit stores
the encrypted key in the user vault in step 160. The DS
managing unit may encode and slice the encrypted key and
store the EC data slices in the DSN memory.

The DS managing unit retrieves a password for the user (or
unit) in step 162 when the DS managing unit determines the
method to encrypt the key to be the password method. The DS
managing unit may retrieve the password from the user vault
or it may be included with the key to be stored.

The DS managing unit may retrieve a hash algorithm from
the user vault. The DS managing unit calculates a hash of the
password in step 164 to produce a storage key utilizing the
hash algorithm.

The DS managing unit encrypts the key to be stored in step
166 to produce an encrypted key utilizing the storage key and
an encryption algorithm based on the operational parameters
(e.g., stored in the user vault). The DS managing unit stores
the encrypted key in the user vault in step 168. The DS
managing unit may encode and slice the encrypted key and
store the EC data slices in the DSN memory.

FIG. 101s a flowchart illustrating the retrieval of an encryp-
tion key where the DS managing unit may retrieve an
encrypted key and decrypt the encrypted key to provide a key
to a requester.

The method begins with the step 170 where the DS man-
aging unit receives a retrieve key request from a requester
(e.g., any system element). Note that the key may be previ-
ously stored in the user vault and or DSN memory as an
encrypted key as was previously discussed.

The DS managing unit determines the DSN memory and/
or user vault location for the associated encrypted key based
on one or more of a user ID, the requester 1D, a key use
indicator, a lookup, a command, a predetermination, and/or
an identifier associated with the key. The DS managing unit
retrieves the encrypted key based on the location determina-
tion in step 172.

The DS managing unit determines a decryption method to
decrypt the encrypted key to produce a decrypted key in step
174. Note that the encrypted key may be stored in the DSN
memory as EC data slices to provide improved security.

The decryption methods include a public key method and a
password method in step 176 (the methods will be described
below). The DS managing unit determines the method to
decrypt the key based on one or more of user device connec-
tivity type (e.g., iSCI), a user vault setting, a command, an
operational parameter, availability of a public key, and/or
availability of a password. For example, the DS managing
unit may choose the password method when a password is
available.

The DS managing unit retrieves a private key for the user
(or unit) in step 178 when the DS managing unit determines
the method to decrypt the key to be the public key method.
The DS managing unit may retrieve the private key from the
user vault or it may be included with the key request.

The DS managing unit decrypts the encrypted key in step
180 to produce the decrypted key utilizing the private key and
an encryption algorithm based on the operational parameters
(e.g., stored in the user vault). The DS managing unit sends
the decrypted key to the requester in step 182.

US 9,413,529 B2

19

The DS managing unit retrieves a password for the user (or
unit) in step 184 when the DS managing unit determines the
method to decrypt the key to be the password method. The DS
managing unit may retrieve the password from the user vault
or it may be included with the key request.

The DS managing unit may retrieve a hash algorithm from
the user vault. The DS managing unit calculates a hash of the
password in step 186 to produce a storage key utilizing the
hash algorithm.

The DS managing unit decrypts the encrypted key in step
188 to produce the decrypted key utilizing the storage key and
an encryption algorithm based on the operational parameters
(e.g., stored in the user vault). The DS managing unit sends
the decrypted key to the requester in step 190.

FIG. 11 is a schematic block diagram of another embodi-
ment of a computing system where a user device 12 may
utilize two or more simultaneous wireless connections thru
one or a plurality of modules 192 to store and/or retrieve EC
data slices to/from the DSN memory associated with DS
storage unit(s) 36. Such a system may provide improved
performance and security.

The system includes a user device 12, anetwork 24, and the
DSN memory which contains one or more DS units 36. The
network 24 may include one or more wireless networks 1
through n to accommodate wireless connections between the
user device and the DSN memory. While FIG. 11 shows n
wireless signals and n DS units 36, it should be understood
that in another embodiment one wireless signal can serve a
plurality of DS units 36 or one wireless module may time
multiplex or frequency multiplex process multiple of the
wireless signals shown in FIG. 11. Therefore, the value of n
across all of the modules 192, wireless signals, and DS units
36 need not be equal.

The user device 12 includes the DS processing unit/func-
tion 34 (see FIG. 1), the DSN interface 32 (see FIG. 1), and
one or more wireless modules 192 (1-n modules where nis a
finite positive integer). In an embodiment, the wireless mod-
ules 192 may be implemented as n hardware transceivers or
fewer than n frequency multiplexed, time multiplexed, or the
like. In another embodiment, the wireless modules 1-n may
be implemented as n software modules operating on one
hardware transceiver (e.g., a software defined radio (SDR)).
In yet another embodiment, the wireless modules 1-n may be
implemented as n software modules operating on two or more
hardware transceivers (e.g., software defined radios).

The wireless module 192 communicates wireless signals
with the network 24 and may operate in accordance with one
or more wireless industry standards including but not limited
to universal mobile telecommunications system (UMTS),
global system for mobile communications (GSM), long term
evolution (LTE), wideband code division multiplexing
(WCDMA), IEEE 802.11, TEEE 802.16, WiMax, Bluetooth,
or any other LAN, WAN, PAN or like wireless protocol.
Therefore any two, four, or any number of wireless modules
in FIG. 12 may be powered by one or more different wireless
protocols.

In one embodiment, wireless module 1 communicates
(e.g., transmits and receives) wireless signals 1 with the net-
work. In this embodiment, wireless module 2 communicates
(e.g., transmits and receives) wireless signals 2 with the net-
work. In general, wireless modules 1-n communicate (e.g.,
transmits and receives) wireless signals 1-n with the network
in this embodiment.

Wireless modules 1-n may utilize the same or different
wireless industry standards. For example, wireless module 1
may utilize GSM and wireless module 2 may simultaneously
utilize IEEE802.16. Wireless modules 1-n may utilize similar

10

15

20

25

30

35

40

45

50

55

60

65

20

or different performance levels (e.g., speed in bits per second)
of the wireless signals 1-n. For example, wireless module 1
may communicate at 100 kilobits per second (Kbps) via wire-
less signals 1 in accordance with the WCDMA standard and
wireless module 2 may simultaneously communicate at 3.3
megabits per second (Mbps) via wireless signals 2 in accor-
dance with IEEE 802.11 standard. In another example, wire-
less module 1 and wireless module 2 may both utilize the
same portion of the network in accordance with the
IEEE802.16 standard but operate at different performance
levels. For instance, wireless module 1 may communicate at
350 kilobits per second via wireless signals 1 in accordance
with the IEEE 802.16 standard and wireless module 2 may
simultaneously communicate at 675 kilobits per second via
wireless signals 2 in accordance with IEEE 802.16 standard.
Since SDR’s are possible in some embodiments, such proto-
cols may be changed over time according to a predetermined
security algorithm whereby the protocol on one or more wire-
less channels is changing over time.

The DS processing unit/function 34 determines which of
the wireless modules 1-n to utilize to transfer slices to and
from the DSN memory. The DS processing unit/function 34
may determine or select two or more simultaneous wireless
paths. For example, the DS processing unit/function 34 may
determine to utilize wireless module 1 to communicate slice
1 over wireless signal 1, wireless module 2 to communicate
slice 2 over wireless signal 2, wireless module 3 to commu-
nicate slice 3 over wireless signal 3, etc. and wireless module
n to communicate slice n over wireless signal n. In another
example, the DS processing may determine to utilize wireless
module 1 to communicate slice 1 through slice 10 over wire-
less signal 1 and wireless module 2 to communicate slice 11
through slice n over wireless signal 2, etc. Therefore, the
various wireless channels may communicate different quan-
tities of data over different times or bandwidth availability
and may change protocols or encryption techniques in order
to improve security.

In an example of operation to illustrate an embodiment
method, the DS processing unit/function 34 creates n slices
for storage in the DS units 36 of the DSN memory by creating
a data segment, encoding the segment, and slicing the
encoded segment into data slices. The DS processing unit/
function 34 determines performance requirements (e.g., stor-
age and retrieval latencies) and security requirements (e.g.,
higher or lower level of security) based on user vault infor-
mation and/or metadata associated with the processed data
object 40. The DS processing unit/function 34 determines
which wireless modules 192 to utilize to communicate the n
slices to the DSN memory. The determination may be based
on one or more of the performance requirements, the security
requirements, and performance indicators for each or some of
the wireless modules 192, and/or security indicators for each
of'the wireless modules 192. The DS processing unit/function
34 determines a mapping of the n slices to the determined
wireless modules 192 where the determination may be based
on one or more of the performance requirements, the security
requirements, performance indicators for each of the wireless
modules 192, and/or security indicators for each of the wire-
less modules 192. The DS processing unit/function 34 sends
the slices with a store command to the DSN memory via the
determined wireless modules 192 and the determined map-
ping of the n slices to the determined wireless modules 192.

In another example of operation to illustrate yet another
embodiment/method, the DS processing unit/function 34
retrieves n slices from the various DS unit(s) 36 of the DSN
memory in FIG. 11. The DS processing unit/function 34
determines performance requirements (e.g., storage and

US 9,413,529 B2

21

retrieval latencies) and security requirements (e.g., higher or
lower level of security) based on user vault information and/
or metadata associated with the data object, or some other
method. The DS processing unit/function 34 determines the
wireless modules 192 to utilize to retrieve the n slices from the
DS unit(s) 36 if the DSN memory. The determination may be
based on one or more of the performance requirements, the
security requirements, and performance indicators for each of
the wireless modules 192, and/or security indicators for each
of'the wireless modules 192. The DS processing unit/function
34 determines a mapping of the n slices to the determined
wireless modules 192 where the determination may be based
on one or more of the performance requirements, the security
requirements, performance indicators for each of the wireless
modules 1927, and/or security indicators for each of the wire-
less modules 192. The DS processing unit/function 34 sends
192 slice retrieval commands to the DSN memory or indi-
vidual DS units 26 via the determined wireless modules 192
and the determined mapping of the n slices to the determined
wireless modules.

FIG. 12 is a schematic block diagram of another embodi-
ment of a computing system where error coded (EC) data
slices are created and distributed to the DS unit(s) 36 within
the DSN memory by one or more user device(s) 12. The EC
data slices are video from a video surveillance camera, a
television event, stadium camera coverage at a live event (e.g.,
football or boxing match) or some other stream of video
information. The system includes user devices 1-D, the net-
work 24, the storage integrity processing unit 20, the DSN
memory, and a player.

In an embodiment, user device 1 includes the computing
core 26 (containing or connected to the DS processing unit/
function 34) and the DSN interface 32. An external video
camera 194 interfaces with the computing core via one of the
interfaces discussed with reference to FIG. 2, such as USB,
firewire, PCI, wireless connections, or like interfaces. In
another embodiment, user device D includes an integrated
camera 196, the computing core 22 (along with the associated
DS processing unit/function 34), and the DSN interface 32.
The internal/integrated video camera also may interface with
the computing core 22 via one of the interfaces discussed with
reference to FIG. 2. In yet another embodiment, the comput-
ing core 22 includes the camera 196 (this configuration is not
specifically shown in FIG. 12).

Either or both cameras 194-196 may output standard defi-
nition (SD) and/or high definition (HD) video utilizing one of
a plurality of video codec or video compression algorithms
and may interface with the computing core 22 via an analog
and/or digital interface that is wired and/or wireline. The
computing core 22 may communicate control and metadata
information with their respective cameras 194-196. The con-
trol information may include operational instructions includ-
ing but not limited to the video compression algorithm to
utilize, a camera position schedule, pan left, pan right, zoom
in, zoom out, change from visible mode to infrared mode,
match a pattern, new software load, etc. The metadata infor-
mation may include a timestamp, location information, pat-
tern recognition information, camera setting information,
camera direction, camera type, camera software version, 3D
rendering data, depth data, facial recognition flags/alerts or
information, internet protocol address, camera ID, etc. The
camera 196 may operate in accordance with the control infor-
mation and send video and metadata to the computing core
22.

The computing core 22 includes the DS processing unit/
function 34. The DS processing unit/function 34 may receive
the video and metadata from a corresponding one or more

20

25

30

40

45

55

22

cameras 196. The DS processing unit/function 34 determines
DSN operational parameters (e.g., number of pillars, encod-
ing method, slicing method, encryption information, and
DSN destinations) that are used for transferring and storing
camera video. The determination may be based on one or
more of an assignment by the DS managing unit, a predeter-
mination, network performance, DSN memory availability,
and/or information from the player.

The DS processing unit/function 34 creates EC data slices
of the video and metadata based on the DSN operational
parameters. The DS processing unit/function 34 sends the EC
data slices with a store command via the network to the DSN
destinations (e.g., the DSN memory 22, the player 198 for live
viewing a local caching, other camera-equipped user devices
for caching and processing). The DS processing unit/function
34 may append the operational parameters to the EC data
slices such that the player can readily decode the slices and
play back the video.

The player 198 includes a DS processing unit/function 34
that is equipped or associated with the computing core 26, the
DSN interface 32, and may include an internal or external
display(s) 200 to display video. The player DS processing
unit/function 34 may receive slices from one or more cameras
196 or DSN memory 22, de-slice and decode the slices in
accordance with the operational parameters as taught herein,
and route the resulting video to the display(s) 200. The player
198 may further process the video based in part on the meta-
data to analyze the video (e.g., look for patterns, detect faces,
detect objects, detect events, time stamp certain events, etc.).
The player 198 may send control information to the camera
via the network to improve or change/program the operation
of the camera 194 and/or 196.

The storage integrity processing unit 20 may determine
when and how slices stored in the DSN memory are to be
deleted, where the determination may be based on one or
more of video storage age requirements (e.g., evidence/
records retention policy), a current timestamp, a stored video
timestamp, the metadata, a command, a command from the
player, a command from the camera, a predetermination,
and/or a DSN memory availability indicator. For example, the
storage integrity processing unit 20 may identity slices of
video that are greater than seven years old and the video
storage requirements specify seven years. Or, usage data of
the video may show that nobody has accessed the video in a
threshold amount of time or at a rate that warrants retention.
In these events, the storage integrity processing unit 20 sends
a delete command to the DSN memory for the determined
slices to be deleted, or at least removed from functional
memory and sent to backup storage (like tape files or archival
disks).

The storage integrity processing unit 20 may determine
slices representing video stored in the DSN memory that are
to be retrieved, decoded, recompressed, etc., with different
video compression algorithms or encodes and may store
those new files to the DSN memory 22. The determination for
this processing may be based on one or more of video storage
age requirements (e.g., evidence/records retention policy), a
current timestamp, a stored video timestamp, type of usage,
frequency of usage, the metadata, a command, a command
from the player, a command from the camera, a predetermi-
nation, and/or a DSN memory availability indicator. For
example, the storage integrity processing unit 20 may identify
slices of video that are the oldest or least used/accessed and
the DSN memory availability indicator may indicate a short-
age of memory whereby these files need to be compressed,
reduced in quality, removed, etc.

US 9,413,529 B2

23

In these cases, the storage integrity processing unit 20
sends a retrieve command to the DSN memory 22 for the
determined slices to be recompressed. The storage integrity
processing unit 20 receives the slices, de-slices and decodes
the slices to produce the video in accordance with the opera-
tional parameters. The storage integrity processing unit 20
also determines a new video compression algorithm based on
the metadata, a command, a command from the player, a vault
lookup, usage patterns, usage frequency, usage quantity, time
accessed, a command from the camera, a predetermination,
and/or a DSN memory availability indicator. The storage
integrity processing unit 20 recompresses the video with a
new video compression algorithm that will provide an
improvement in memory availability or utilization (e.g., uti-
lize less DSN memory space or free up more accessible or
faster space for content that can be processed or delivered
faster).

The storage integrity processing unit 20 determines the
new DSN operational parameters to create slices from the
recompressed video based on the metadata, a command, a
command from the player, a vault lookup, a command from
the camera, a predetermination, and/or a DSN memory avail-
ability indicator or other parameters taught herein. The stor-
age integrity processing unit 20 encodes and slices the recom-
pressed video in accordance with the new DSN operational
parameters to produce new slices. The storage integrity pro-
cessing unit sends the new slices with a store command to the
DSN memory to store the new data slices. Note, the cameras
taught in FIG. 12 may be any camera that captures any kind of
image in any kind of format or spectrum. So, cameras 196
may be any sensing device, such as video cameras, profes-
sional film cameras. 3D cameras, embedded low cost laptop
cameras, security cameras, scientific cameras that capture
other spectrums (infrared, gamma ray, ultraviolet, micro-
wave, etc.), night spectrum cameras, heat sensors, simple
motion detectors, thermometers, microphones, or any other
camera or combination of devices that track audio and/or
visual data, spectrum data, or changes in such data over time.
The system taught in FIG. 12 allows real time or near real time
information to be processed and sent using the segment and
slice storage and security methodology taught herein. Near
real time generally means any processing done within a few
seconds to a few minutes of the capture of the real time data.
However, if the case of scientific data, as in transmission from
satellite or space bound objects, the time may take longer.
Audio/visual information as used herein means any data or
information that contains one or both of audio or visual infor-
mation.

FIG. 13 is a flowchart illustrating another embodiment for
storing an encryption key in the system(s) taught herein. As
previously described, encryption keys may be utilized to
encrypt and/or decode control information and/or data con-
tent. For example, a public key may be utilized to encrypt a
message from any source to a target destination while a pri-
vate key may be utilized just by a key owner to decrypt the
message for the destination when the message is encrypted
utilizing the public key. The system may utilize such public/
private key pairs for signing integrity to authenticate units,
modules, users, devices, and transactions. In another
example, a secret key may be utilized to encrypt and/or
decode data content associated with a secret key owner. For
example, a secret key may be utilized to encrypt a series of
data object data segments prior to encoding, slicing, and
storing EC data slices in the DSN memory. The key owner
may utilize the same secret key to subsequently decrypt
retrieved, de-sliced, and decoded encrypted data segments.

20

30

35

40

45

50

55

60

65

24

In this embodiment, the encrypted key is stored as a set of
EC data slices in accordance with a dispersed storage error
coding function to produce a set of encoded encrypted key
slices, wherein a decode threshold number of the encoded
encrypted key slices of the set of encoded encrypted key slices
is required to reconstruct the encrypted key. For example, in
one security scenario, only a low number of slices (3 outofa
possible 8 total stored slices (8/3)), would be required to
reconstruct the encrypted key. In another security scenario, a
high number of slices (7 out of a possible 8 total stored slices
(8/7)) would be required to reconstruct the encrypted key. To
modify the security level, the DS managing unit 18 may
adjust the decode threshold. To provide another level of secu-
rity, the decode threshold may be set for specific security
scenarios or levels, follow a pattern (e.g., 3, 5, 7, etc.) made
variable (random) or incremental (3, 4, 5, 6, etc.).

In another example embodiment, an encryption key may be
stored for each pillar in a data slice set (in the above example,
8 encrypted keys would be stored). The process may be itera-
tive such that the decode threshold of data slices are retrieved
and then the correlating encryption keys are retrieved for
these slices. Each slice for every slice set may receive the
same encryption algorithm with the same encrypted key.
Also, the retrieval order of the multiple encryption keys may
be randomized or follow a specific order.

Note that the DS managing unit may enforce permissions
such thatretrieving and storing keys is controlled based on the
user ID, the system element ID, and a permissions list lookup.
For example, users may have permissions to retrieve and store
their own private, public, and secret keys. In another example,
users may have permissions to retrieve public keys. In yet
another example, the DS managing unit may have permis-
sions to retrieve and store all keys.

The method begins with the step 202 where the DS man-
aging unit receives a key to store from any other system
element. The DS managing unit determines an encryption
method to encrypt the key in step 204 to produce an encrypted
key. In this embodiment, encryption keys are stored in the
DSN memory as error coded (EC) data slices of the encrypted
key to provide improved security (as will be described in
greater detail hereafter).

The encryption methods include a public key method and a
password method (the methods will be described below). In
step 206, the DS managing unit determines the method to
encrypt the key based on one or more of user device connec-
tivity type (e.g., iSCI), a user vault setting, a command, an
operational parameter, availability of a public key, and/or
availability of a password. For example, the DS managing
unit may choose the public key method when the device
connectivity type is iSCI (e.g., no password with iSCI).

The DS managing unit retrieves a public key for the user (or
unit) in step 208 when the DS managing unit determines the
method to encrypt the key to be the public key method. The
DS managing unit may retrieve the public key from the user
vault or it may be included with the key to be stored.

The DS managing unit encrypts the key to be stored in step
210 to produce an encrypted key utilizing the public key and
an encryption algorithm based on the operational parameters
(e.g., of the user’s storage vault). The DS managing unit
stores the encrypted key in the user vault. In step 212, the DS
managing unit encodes the encrypted key using a dispersed
storage (DS) error coding function and thereafter slices the
encrypted key. In step 214, the EC data slices are stored in the
user’s DSN memory vault.

The DS managing unit retrieves a password for the user (or
unit) beginning in step 216 when the DS managing unit deter-
mines the method to encrypt the key to be the password

US 9,413,529 B2

25

method. In step 218, the DS managing unit may retrieve a
hash algorithm from the user vault. The DS managing unit
calculates a hash of the password to produce a storage key
utilizing the retrieved hash algorithm. Alternately, the hashed
password is retrieved directly from the user vault storage. The
password or the hashed password is used as a key for encrypt-
ing the encryption key.

The DS managing unit encrypts the key to be stored in step
220 to produce an encrypted key utilizing the encryption key
and an encryption algorithm based on operational parameters
(e.g., of the user vault storage). In step 222, the DS managing
unit encodes the encrypted key using a dispersed storage (DS)
error coding function and thereafter slices the encrypted key.
The DS managing unit stores the EC data slices in the user’s
DSN memory vault in step 224.

FIG. 14 is a flowchart illustrating another embodiment for
the retrieval of an encryption key in the system(s) taught
herein. The method begins with the step where the DS man-
aging unit receives a retrieve key request from a requester
(e.g., any system element). Note that the key may be previ-
ously stored in the user vault storage and or DSN memory as
EC key slices as was previously discussed.

The DS managing unit determines the DSN memory and/
or user vault location for the associated encrypted key based
on one or more of a user ID, the requester 1D, a key use
indicator, a lookup, a command, a predetermination, and/or
an identifier associated with the key. The DS managing unit
retrieves the encrypted key based on the location determina-
tion.

The retrieval, in response to the retrieve encryption key
request and further the location determination, includes
retrieving at least a decode threshold number of the encoded
encrypted key slices of a set of encoded encrypted key slices
from storage units of the DSN (the encrypted key was previ-
ously stored as a set of EC data slices in accordance with a
dispersed storage error coding function to produce a set of
encoded encrypted key slices). The decode threshold number
of the encoded encrypted key slices of the set of encoded
encrypted key slices is required to reconstruct the encrypted
key.

The decode threshold number may vary as previously dis-
cussed. For example, in one security scenario, only a low
number of slices (3 out of a possible 8 total stored slices
(8/3)), would be required to reconstruct the encrypted key. In
another security scenario, a high number of slices (7 out of a
possible 8 total stored slices (8/7)) would be required to
reconstruct the encrypted key. To modify the security level,
the DS managing unit 18 may adjust the decode threshold. To
provide another level of security, the decode threshold may be
set for specific security scenarios or levels, follow a pattern
(e.g., 3, 5,7, etc.) made variable (random) or incremental (3,
4,5, 6, etc.).

In another example embodiment, an encryption key may be
stored for each pillar in a data slice set (in the above example,
8 encrypted keys would be stored). The process may be itera-
tive such that the decode threshold of data slices are retrieved
and then the correlating encryption keys are retrieved for
these slices. Each slice for every slice set may receive the
same encryption algorithm with the same encrypted key.
Also, the retrieval order of the multiple encryption keys may
be randomized or follow a specific order.

In step 230, at least the decode threshold number of the
encoded encrypted key slices retrieved is decoded using dis-
persed storage error coding function to produce an encrypted
encryption key.

In step 232, the DS managing unit determines a decryption
method to decrypt the encrypted key to produce a decrypted

15

25

40

45

50

65

26

key. The decryption methods include a public key method and
a password method (the methods will be described below).
The DS managing unit determines the method to decrypt the
key based on one or more of user device connectivity type
(e.g., iISCI), a user vault setting, a command, an operational
parameter, availability of a public key, and/or availability of a
password. For example, the DS managing unit may choose
the password method when a password is available.

The DS managing unit retrieves a private key for the user
(or unit) in step 236 when the DS managing unit determines
the method to decrypt the key to be the public key method.
The DS managing unit may retrieve the private key from the
user vault or it may be included with the key request.

The DS managing unit decrypts the encrypted key in step
238 to produce the decrypted key utilizing the private key and
an encryption algorithm based on the operational parameters
(e.g., stored in the user vault). The DS managing unit sends
the decrypted key to the requester in step 240.

The DS managing unit retrieves a password for the user (or
unit) when the DS managing unit determines the method to
decrypt the key to be the password method. The DS managing
unit may retrieve the password from the user vault or it may be
included with the key request.

The DS managing unit retrieves a password for the user (or
unit) beginning in step 242 when the DS managing unit deter-
mines the method to encrypt the key to be the password
method. In step 244, the DS managing unit may retrieve a
hash algorithm from the user vault. The DS managing unit
calculates a hash of the password to produce a storage key
utilizing the retrieved hash algorithm. Alternately, the hashed
password is retrieved directly from the user vault storage. The
password or the hashed password is used as a key for encrypt-
ing the encryption key.

The DS managing unit decrypts the encrypted key in step
246 to produce the decrypted key utilizing the storage key and
an encryption algorithm based on the operational parameters
(e.g., stored in the user vault). The DS managing unit sends
the decrypted key to the requester in step 248.

FIGS. 15A and 15B, collectively, are a schematic block
diagram of an embodiment of a computing system in accor-
dance with the present disclosure. As shown, DS managing
unit 18 (see FIGS. 1 and 2) includes at least processing
module 50. Processing module 50 performs the method of
FIGS. 1-16. More specifically, as shown, the method of FIGS.
13 and 14 is performed by processing module 50.

The processing module 50 may be a single processing
device or a plurality of processing devices. Such a processing
device may be a microprocessor, micro-controller, digital
signal processor, microcomputer, central processing unit,
field programmable gate array, programmable logic device,
state machine, logic circuitry, analog circuitry, digital cir-
cuitry, and/or any device that manipulates signals (analog
and/or digital) based on hard coding of the circuitry and/or
operational instructions. The processing module 50 may have
anassociated memory and/or memory element, which may be
a single memory device, a plurality of memory devices, and/
or embedded circuitry of the processing module 50. Such a
memory device may be a read-only memory, random access
memory, volatile memory, non-volatile memory, static
memory, dynamic memory, flash memory, cache memory,
and/or any device that stores digital information. Note that if
the processing module 50 includes more than one processing
device, the processing devices may be centrally located (e.g.,
directly coupled together via a wired and/or wireless bus
structure) or may be located in a distributed manner (e.g.,
cloud computing via indirect coupling via a local area net-
work and/or a wide area network). Further note that when the

US 9,413,529 B2

27

processing module 50 implements one or more of its func-
tions via a state machine, analog circuitry, digital circuitry,
and/or logic circuitry, the memory and/or memory element
storing the corresponding operational instructions may be
embedded within, or external to, the circuitry comprising the
state machine, analog circuitry, digital circuitry, and/or logic
circuitry. Still further note that, the memory element stores,
and the processing module 50 executes, hard coded and/or
operational instructions corresponding to at least some of the
steps and/or functions illustrated in FIGS. 1-16.

FIG. 16 is a diagram of an example embodiment illustrat-
ing the retrieval of an encryption key in the system(s) taught
herein. An encoded encrypted key is sliced into a plurality of
slices, for example eight (8) as shown. A subset (decode
threshold) of slices 1-8 may be retrieved from a user storage
vault to deconstruct the encryption key stored therein. As
previously discussed, the DS managing unit 18 sets the
decode threshold (number of slices needed for a successful
retrieval). Slice groups 250, 252, 254 and 256 illustrate an
increasing decode threshold, starting with a relatively low
security level 8/5 (5 slices needed for successful retrieval) up
to a very high decode threshold and security level of 8/8 (8
slices needed for successful retrieval) as shown in slice group
256.

As illustrated, slice group 250 represents a successful
retrieval with slices 1, 4, 5, 6 and 8 retrieved to meet the
decode threshold of 5 slices. Slice group 254 also meets the
required decode threshold, while slice groups 252 and 256
were unsuccessful with less than their decode thresholds
retrieved (8/5 and 8/7, respectively).

In one embodiment, the required slices required for
retrieval may be random, for example as shown in slice group
250 (any 5 slices retrieved make for a successful retrieval) or
in an alternative embodiment, can have additional require-
ments to increase security such as ordered retrieval as shown
in slice group 252 (must retrieve a consecutive slice subset,
such as the first x slices, where x is the decode threshold
number). It is envisioned that other slice retrieval sequencing
methods may be substituted without departing from the scope
of the present disclosure.

As may be used herein, the terms “substantially” and
“approximately” provides an industry-accepted tolerance for
its corresponding term and/or relativity between items. Such
an industry-accepted tolerance ranges from less than one
percent to fifty percent and corresponds to, but is not limited
to, component values, integrated circuit process variations,
temperature variations, rise and fall times, and/or thermal
noise. Such relativity between items ranges from a difference
of a few percent to magnitude differences. As may also be
used herein, the term(s) “coupled to” and/or “coupling” and/
or includes direct coupling between items and/or indirect
coupling between items via an intervening item (e.g., an item
includes, but is not limited to, a component, an element, a
circuit, and/or a module) where, for indirect coupling, the
intervening item does not modify the information of a signal
but may adjust its current level, voltage level, and/or power
level. As may further be used herein, inferred coupling (i.e.,
where one element is coupled to another element by infer-
ence) includes direct and indirect coupling between two items
in the same manner as “coupled to”. As may even further be
used herein, the term “operable to” indicates that an item
includes one or more of power connections, input(s),
output(s), etc., to perform one or more its corresponding
functions and may further include inferred coupling to one or
more other items. As may still further be used herein, the term
“associated with”, includes direct and/or indirect coupling of
separate items and/or one item being embedded within

10

25

30

40

45

50

28

another item. As may be used herein, the term “compares
favorably”, indicates that a comparison between two or more
items, signals, etc., provides a desired relationship. For
example, when the desired relationship is that signal 1 has a
greater magnitude than signal 2, a favorable comparison may
be achieved when the magnitude of signal 1 is greater than
that of signal 2 or when the magnitude of signal 2 is less than
that of signal 1.

The present disclosure has also been described above with
the aid of method steps illustrating the performance of speci-
fied functions and relationships thereof. The boundaries and
sequence of these functional building blocks and method
steps have been arbitrarily defined herein for convenience of
description. Alternate boundaries and sequences can be
defined so long as the specified functions and relationships
are appropriately performed. Any such alternate boundaries
or sequences are thus within the scope and spirit of the claims.
Furthermore, the system taught herein may be referred to
either as dispersed storage network or distributed storage
networks.

The present disclosure has been described above with the
aid of functional building blocks illustrating the performance
of certain significant functions. The boundaries of these func-
tional building blocks have been arbitrarily defined for con-
venience of description. Alternate boundaries could be
defined as long as the certain significant functions are appro-
priately performed. Similarly, flow diagram blocks may also
have been arbitrarily defined herein to illustrate certain sig-
nificant functionality. To the extent used, the flow diagram
block boundaries and sequence could have been defined oth-
erwise and still perform the certain significant functionality.
Such alternate definitions of both functional building blocks
and flow diagram blocks and sequences are thus within the
scope and spirit of the claims. One of average skill in the art
will also recognize that the functional building blocks, and
other illustrative blocks, modules and components herein,
can be implemented as illustrated or by discrete components,
application specific integrated circuits, processors executing
appropriate software and the like or any combination thereof.

What is claimed is:

1. A method for processing an encryption key within a
portion of a distributed storage network (DSN), the method
comprises:

receiving an encryption key to store;

determining an encryption method;

encrypting the encryption key with the determined encryp-

tion method to produce an encrypted key;
determining a pillar width of a DSN user storage vault as a
parameter of a dispersed storage error coding function;

encoding the encrypted key in accordance with the dis-
persed storage error coding function to produce a set of
encoded encrypted key slices, wherein a number of
encoded encrypted key slices in the set of encoded
encrypted key slices is equal to the pillar width, wherein
adecode threshold number of the encoded encrypted key
slices of the set of encoded encrypted key slices is
required to reconstruct the encrypted key; and

storing in a distributed manner across the DSN user storage

vault the set of encoded encrypted key slices in DSN
memory.

2. The method of claim 1 further comprises one or more of:

increasing the decode threshold to increase a level of secu-

rity; and

decreasing the decode threshold to decrease a level of

security.

US 9,413,529 B2

29

3. The method of claim 1 further comprises:

performing the encrypting an encryption key for a plurality

of pillars within the DSN user storage vault.

4. The method of claim 1, wherein the determining an
encryption method further comprises:

a public key method or a password method.

5. The method of claim 4, wherein the public key method
includes:

retrieving a public key from a user storage vault to use as a

key for encrypting the encryption key.

6. The method of claim 4, wherein the password method
includes:

retrieving a password from the DSN user storage vault and

hashing the password to produce a hashed password,
wherein the password or the hashed password is used as
a key for encrypting the encryption key; and

retrieving the hashed password.

7. The method of claim 1, wherein the encryption method
includes at least an encryption algorithm.

8. The method of claim 7, wherein the encryption algo-
rithm is based on one or more of:

user device connectivity type;

a setting of the DSN user storage vault;

a command;

an operational parameter;

availability of a public encryption key; and

availability of a password.

9. The method of claim 1 further comprising:

controlling access to the encryption key based on one or

more of:

a user ID;

a system element ID; and
a permissions list lookup.

10. The method of claim 9 further comprising:

the permissions list includes one or more permissions to

retrieve and store one or more of:

private encryption keys;

public encryption keys;

secret encryption keys; and

all encryption keys.

11. A method for processing encrypted data within a dis-
tributed storage network (DSN), the method comprises:

receiving a retrieve encryption key request from a

requester,

determining a width of a DSN user storage vault, the width

including a number of storage pillars;

determining a decode threshold number of storage pillars

for successful retrieval,

retrieving, in response to the retrieve encryption key

request, at least the decode threshold number of encoded
encrypted key slices of a set of encoded encrypted key
slices from the storage pillars of the DSN;

decoding the at least the decode threshold number of the

encoded encrypted key slices to produce an encrypted
encryption key;

determining a decryption method;

decrypting the encrypted encryption key with the deter-

mined decryption method to produce an encryption key;
and

sending the encryption key to the requester to decrypt one

or more portions of the encrypted data.

12. The method of claim 11, wherein the decryption
method includes at least a decryption algorithm based on one
or more of:

user device connectivity type;

a user vault setting;

a command;

10

15

20

25

35

40

45

50

55

60

65

30

an operational parameter;

availability of a public encryption key; and

availability of a password.

13. The method of claim 11 further comprises:

a permissions list including one or more permissions to

retrieve and store one or more of:

private encryption keys;

public encryption keys;

secret encryption keys; and

all encryption keys.

14. The method of claim 11 further comprises:

performing the retrieving an encrypted key for each of the

storage pillars within the DSN user storage vault.

15. The method of claim 11, wherein the retrieving is any
of:

ordered;

random; and

iterative.

16. The method of claim 11, wherein the decryption
method comprises a public key method or a password
method.

17. The method of claim 16, wherein the public key method
includes:

retrieving a public key from the DSN user storage vault, to

use as a key for encrypting the encryption key.

18. The method of claim 16, wherein the password method
further comprises one or more of:

retrieving a password from the DSN user storage vault and

hashing the password to produce a hashed password,
wherein the password or the hashed password is used as
a key for encrypting the encryption key; and

retrieving the hashed password.

19. A distributed storage (DS) managing unit comprises:

a first module operable to:

store an encryption key by:

receiving an encryption key to store;

determining an encryption method;

encrypting the encryption key with the determined
encryption method to produce an encrypted key;

determining a pillar width of a distributed storage
network (DSN) user storage vault as a parameter of
a dispersed storage error coding function;

encoding the encrypted key in accordance with the
dispersed storage error coding function to produce
a set of encoded encrypted key slices, wherein a
number of encoded encrypted key slices in the set
of encoded encrypted key slices is equal to the
pillar width, wherein a decode threshold number of
the encoded encrypted key slices of the set of
encoded encrypted key slices is required to recon-
struct the encrypted key; and

storing the set of encoded encrypted key slices in DSN
memory; and

a second module operable to:

retrieve an encryption key by:

receiving a retrieve encryption key request from a
requester;

determining the pillar width;

determining a decode threshold number of storage
pillars for successful retrieval in accordance with
the dispersed storage error coding function;

retrieving, in response to the retrieve encryption key
request, at least the decode threshold number of the
encoded encrypted key slices of a set of encoded
encrypted key slices from storage units of the DSN;

US 9,413,529 B2

31

decoding the at least the decode threshold number of
the encoded encrypted key slices to produce an
encrypted encryption key;
determining a decryption method;
decrypting the encrypted encryption key with the
determined decryption method to produce the
encryption key; and
sending the encryption key to the requester to decrypt
one or more portions of encrypted data.
20. The distributed storage (DS) managing unit of claim 19
further comprising:
when storing the encryption key, the determining an
encryption method further comprises retrieving a public
key either from the DSN user storage vault or the encryp-
tion key to store; and
when retrieving the encryption key, the determining an
encryption method further comprises retrieving a private
key for a user or unit, wherein the private key is retrieved
either from the DSN user storage vault or the retrieve
encryption key request.

#* #* #* #* #*

15

20

32

